Allometry; Biomass; Carbon; Congo basin; Crown radius; Tropical trees; Tree diameter; Total tree height; Wood specific gravity
Abstract :
[en] The estimation and monitoring of the huge amount of carbon contained in tropical forests, and specifically in the above-ground biomass (AGB) of trees, is needed for the successful implementation of climate change mitigation strategies. Its accuracy depends on the availability of reliable allometric equations to convert forest inventory data into AGB estimates. In this study, we tested whether central African forests are really different from other tropical forests with respect to biomass allometry, and further examined the regional variation in tropical tree allometry across the Congo basin forests. Following the same standardized protocol, trees were destructively sampled for AGB in six sites representative of terra firme forests. We fitted regional and local allometric models, including tree diameter, wood specific gravity, tree height, and crown radius in the AGB predictors. We also evaluated the AGB predictions at the tree level across the six sites of our new models and of existing allometric models, including the pantropical equations developed by Chave et al. (2014, 2005) and the local equations developed by Ngomanda et al. (2014) in Gabon. With a total of 845 tropical trees belonging to 55 African species and covering a large range of diameters (up to 200 cm), the original data presented here can be considered as the largest ever destructive sampling for a tropical region. Regional allometric models were established and including tree height and crown radius had a small but significant effect on AGB predictions. In contrast to our expectations, tree height and crown radius did not explain much between-site variation. Examining the performance of general models (pantropical or regional) versus local models (site-specific), we found little advantage of using local equations. Earlier pantropical equations developed for moist forests were found to provide reasonable predictions of tree AGB in most sites, though the wettest sites, i.e., evergreen forests in Equatorial Guinea and, to a lesser extent in Gabon, tended to show a wet forest allometry. For the Congo basin forests, except in Equatorial Guinea where local models might be preferred, we recommend using our regional models, and otherwise the most recent pantropical models, that were validated here. These results constitute a critical step for the estimation and monitoring of biomass/carbon stocks contained in the second largest contiguous block of tropical forests worldwide, and the successful implementation of climate change mitigation strategies, such as REDD+.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., Lema, A., Moreno, F., Orrego, S., Rodríguez, L., Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manage. 267 (2012), 297–308.
Antin, C., Pélissier, R., Vincent, G., Couteron, P., Crown allometries are less responsive than stem allometry to tree size and habitat variations in an Indian monsoon forest. Trees 27 (2013), 1485–1495, 10.1007/s00468-013-0896-7.
Basuki, T.M., Van Laake, P.E., Skidmore, A.K., Hussin, Y.A., Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manage. 257 (2009), 1684–1694.
Brown, S., Gillespie, A.J.R., Lugo, A.E., Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 35 (1989), 881–902.
Chambers, J.Q., Santos, J., Ribeiro, R.J., Higuchi, N., Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. For. Ecol. Manage. 152 (2001), 73–84.
Chave, J., Andalo, C., Brown, S., Cairns, M., Chambers, J., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (2005), 87–99.
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., Perez, R., Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359 (2004), 409–420.
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum. Ecol. Lett. 12 (2009), 351–366.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G., Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20 (2014), 3177–3190, 10.1111/gcb.12629.
Clark, D.B., Kellner, J.R., Tropical forest biomass estimation and the fallacy of misplaced concreteness. J. Veg. Sci. 23 (2012), 1191–1196, 10.1111/j.1654-1103.2012.01471.x.
Djomo, A.N., Ibrahima, A., Saborowski, J., Gravenhorst, G., Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For. Ecol. Manage. 260 (2010), 1873–1885.
Ebuy, J., Lokombe Dimandja, J., Ponette, Q., Sonwa, D., Picard, N., Allometric equation for predicting aboveground biomass of three tree species. J. Trop. For. Sci. 23 (2011), 125–132.
FAO, The Global Forest Resources Assessment 2015 How are the World's Forests Changing?. 2015, Food and Agriculture Organization of the United Nations, Rome, Italy.
Fayolle, A., Doucet, J.-L., Gillet, J.-F., Bourland, N., Lejeune, P., Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. For. Ecol. Manage. 305 (2013), 29–37, 10.1016/j.foreco.2013.05.036.
Fayolle, A., Loubota Panzou, G.J., Drouet, T., Swaine, M.D., Bauwens, S., Vleminckx, J., Biwole, A., Lejeune, P., Doucet, J.-L., Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. For. Ecol. Manage. 374 (2016), 42–50, 10.1016/j.foreco.2016.04.033.
Fayolle, A., Picard, N., Doucet, J.-L., Swaine, M., Bayol, N., Bénédet, F., Gourlet-Fleury, S., A new insight in the structure, composition and functioning of central African moist forests. For. Ecol. Manage. 329 (2014), 195–205, 10.1016/j.foreco.2014.06.014.
Feldpausch, T.R., Lloyd, J., Lewis, S.L., Brienen, R.J.W., Gloor, E., Monteagudo Mendoza, A., Lopez-Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Tree height integrated into pan-tropical forest biomass estimates. Biogeosci. Discuss. 9 (2012), 2567–2622.
Gibbs, H.K., Brown, S., Niles, J.O., Foley, J.A., Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett., 2, 2007, 045023.
Goodman, R.C., Phillips, O.L., Baker, T.R., The importance of crown dimensions to improve tropical tree biomass estimates. Ecol. Appl. 24 (2013), 680–698, 10.1890/13-0070.1.
Goodman, R.C., Phillips, O.L., Baker, T.R., Tropical forests: tightening up on tree carbon estimates. Nature, 491, 2012, 527.
Henry, M., Picard, N., Trotta, C., Manlay, R.J., Valentini, R., Bernoux, M., Saint-André L., Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn. 45 (2011), 477–569.
Kearsley, E., de Haulleville, T., Hufkens, K., Kidimbu, A., Toirambe, B., Baert, G., Huygens, D., Kebede, Y., Defourny, P., Bogaert, J., Beeckman, H., Steppe, K., Boeckx, P., Verbeeck, H., Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat. Commun., 4, 2013, 10.1038/ncomms3269.
Keenan, R.J., Reams, G.A., Achard, F., de Freitas, J.V., Grainger, A., Lindquist, E., 2015. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manage., Changes in Global Forest Resources from 1990 to 2015 352, 9–20. https://doi.org/10.1016/j.foreco.2015.06.014.
Kerkhoff, A., Enquist, B.J., Multiplicative by nature: why logarithmic transformation is necessary in allometry. J. Theor. Biol. 257 (2009), 519–521.
Ketterings, Q.M., Coe, R., van Noordwijk, M., Ambagau, Y., Palm, C.A., Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manage. 146 (2001), 199–209.
Larjavaara, M., Muller-Landau, H.C., Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest. Methods Ecol. Evol. 4 (2013), 793–801.
Loubota Panzou, G.J., Doucet, J.L., Loumeto, J.J., Biwole, A., Bauwens, S., Fayolle, A., Biomasse et stocks de carbone des forêts tropicales africaines (synthèse bibliographique). Biotechnol. Agron. Société Environ. 20 (2016), 508–522.
Ngomanda, A., Engone Obiang, N.L., Lebamba, J., Moundounga Mavouroulou, Q., Gomat, H., Mankou, G.S., Loumeto, J., Midoko Iponga, D., Kossi Ditsouga, F., Zinga Koumba, R., Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest?. For. Ecol. Manage. 312 (2014), 1–9.
Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014, IPCC.
Parmentier, I., Malhi, Y., Senterre, B., Whittaker, R.J., Alonso, A., Balinga, M.P.B., Bakayoko, A., Bongers, F., Chatelain, C., Comiskey, J.A., The odd man out? Might climate explain the lower tree-diversity of African rain forests relative to Amazonian rain forests?. J. Ecol. 95 (2007), 1058–1071.
Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A., Henry, M., Should tree biomass allometry be restricted to power models?. For. Ecol. Manage. 353 (2015), 156–163, 10.1016/j.foreco.2015.05.035.
Picard, N., Saint-André L., Henry, M., 2012. Manuel de construction d’équations allométriques pour l'estimation du volume et la biomasse des arbres : de la mesure de terrain à la prédiction. Organisation des Nations Unies pour l'alimentation et l'agriculture, et Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Rome, Montpellier.
Ploton, P., Barbier, N., Takoudjou Momo, S., Réjou-Méchain, M., Boyemba Bosela, F., Chuyong, G., Dauby, G., Droissart, V., Fayolle, A., Goodman, R.C., Henry, M., Kamdem, N.G., Mukirania, J.K., Kenfack, D., Libalah, M., Ngomanda, A., Rossi, V., Sonké B., Texier, N., Thomas, D., Zebaze, D., Couteron, P., Berger, U., Pélissier, R., Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences 13 (2016), 1571–1585, 10.5194/bg-13-1571-2016.
Development Core Team, R., R: a language and environment for statistical computing. 2017, R Foundation for Statistical Computing, Vienna, Austria.
Rondeux, J., La mesure des arbres et des peuplements forestiers. 2nde ed., 1999, Les presses agronomiques de Gembloux.
Rutishauser, E., Noor'an, F., Laumonier, Y., Halperin, J., Hergoualch, K., Verchot, L., Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. For. Ecol. Manage. 307 (2013), 219–225 https://doi.org/https://doi.org/10.1016/j.foreco.2013.07.013.
Sileshi, G.W., A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manage. 329 (2014), 237–254, 10.1016/j.foreco.2014.06.026.
Slik, J.W., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C., et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 22 (2013), 1261–1271.
Sprugel, D.G., Correcting for bias in log-transformed allometric equations. Ecology 64 (1983), 209–210.
Thomas, S.C., Martin, A.R., Carbon content of tree tissues: a synthesis. Forests 3 (2012), 332–352.
Umunay, P.M., Gregoire, T.G., Ashton, M.S., Estimating biomass and carbon for Gilbertiodendron dewevrei (De Wild) Leonard, a dominant canopy tree of African tropical Rainforest: implications for policies on carbon sequestration. For. Ecol. Manage. 404 (2017), 31–44.
Van der Werf, G., Morton, D.C., DeFries, R.S., Olivier, J.G.J., Kasibhatla, P.S., Jackson, R.B., Collatz, G., Randerson, J., CO2 emissions from forest loss. Nat. Geosci. 2 (2009), 737–738.
Verbeeck, H., Boeckx, P., Steppe, K., Tropical forests: include Congo basin. Nature, 479, 2011, 179.
Vieilledent, G., Vaudry, R., Andriamanohisoa, S.F.D., Rakotonarivo, O.S., Randrianasolo, H.Z., Razafindrabe, H.N., Rakotoarivony, C.B., Ebeling, J., Rasamoelina, M., A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol. Appl. 22 (2012), 572–583.
West, G.B., Brown, J.H., Enquist, B.J., A general model for the structure and allometry of plant vascular systems. Nature, 400, 1999, 664.
West, G.B., Brown, J.H., Enquist, B.J., A general model for the origin of allometric scaling laws in biology. Science 276 (1997), 122–126.
White, F., The Vegetation of Africa: A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa. 1983, ORSTOM – UNESCO, Paris, France.
Woodcock, D., Shier, A., Wood specific gravity and its radial variations: the many ways to make a tree. Trees-Struct. Funct. 16 (2002), 437–443.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.