Pyrenean brook newt; Calotriton asper; Amphibian; Pyrenees; Phylogeography; population genetics; microsatellites; endemism; altitude; FST; mountains; landscape genetics; Calotriton des Pyrénées; Euprocte des Pyrenees; Salamandridae
Abstract :
[en] The Pyrenees represent a natural laboratory for biogeographic, evolutionary and ecological research of mountain fauna as a result of the high variety of habitats and the profound effect of the glacial and interglacial periods. There is a paucity of studies providing a detailed insight into genetic processes and better knowledge on the patterns of genetic diversity and how they are maintained under high altitude conditions. This is of particular interest when considering the course of past climate conditions and glaciations in a species which is considered site tenacious, with long generation times. Here we analyzed the genetic patterns of diversity and structure of the endemic Pyrenean brook newt (Calotriton asper) along its distribution range, with special emphasis on the distinct habitat types (caves, streams, and lakes), and the altitudinal and geographical ranges, using a total set of 900 individuals from 44 different localities across the Pyrenean mountain range genotyped for 19 microsatellite loci. We found evidence for a negative longitudinal and positive altitudinal gradient of genetic diversity in C. asper populations. The fact that genetic diversity was markedly higher westwards is in accordance with other Pyrenean species. However, the impact of altitudinal gradient on the genetic diversity seems to differ from other species, and mostly from other amphibians. We found that lower altitudes can act as a barrier probably because the lowlands do not provide a suitable habitat for C. asper. Regarding the distinct habitat types, caves had significantly lower values of genetic diversity compared to streams or lakes. The mean FST value was relatively high (0.304) with maximum values as high as 0.771, suggesting a highly structured total population. Indeed, populations were grouped into five subclusters, the eastern populations (cluster 1) remained grouped into two subclusters and the central-western Pyrenees (cluster 2) into three subclusters. The increase of isolation with geographical distance is consistent with the population structure detected. In conclusion, C. asper seems to be adapted to high altitude mountain habitats, and its genetic diversity is higher in the western Pyrenees. In terms of conservation priority, we consider more relevant the populations that represent a reservoir of genetic diversity.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Valbuena-Ureña, Emilio; Universitat Autònoma de Barcelona
Oromi Farrús, Neus ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Soler-Membrives, Anna; Universitat Autònoma de Barcelona
Denoël, Mathieu ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Guillaume, Olivier; Station d'Ecologie Théorique et Expérimentale CNRS-Université de Toulouse
Sanuy, Delfi; Universitat de Lleida
Loyau, Adeline; Université de Toulouse
Schmeller, Dirk S.; Université de Toulouse
Steinfartz, Sebastian; Technische Universität Braunschweig
Language :
English
Title :
Jailed in the mountains: Genetic diversity and structure of an endemic newt species across the Pyrenees
Publication date :
August 2018
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Volume :
13
Issue :
8
Pages :
e0200214
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 600405 - BEIPD - Be International Post-Doc - Euregio and Greater Region
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique ULg FSR - Université de Liège. Fonds spéciaux pour la recherche CE - Commission Européenne
Gutiérrez-Rodríguez J, Barbosa AM, Martínez-Solano Í (2017) Integrative inference of population history in the Ibero-Maghrebian endemic Pleurodeles waltl (Salamandridae). Molecular Phylogenetics and Evolution 112: 122–137. https://doi.org/10.1016/j.ympev.2017.04.022 PMID: 28454930
Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.
Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 359: 183–195. https://doi.org/10.1098/rstb.2003.1388 PMID: 15101575
Clare FC, Halder JB, Daniel O, Bielby J, Semenov MA, Jombart T, et al. (2016) Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philosophical Transactions of the Royal Society B: Biological Sciences 371. https://doi.org/10.1098/rstb.2016.0002
Schmeller DS, Loyau A, Bao K, Brack W, Chatzinotas A, De Vleeschouwer F, et al. (2018) People, pollution and pathogens–Global change impacts in mountain freshwater ecosystems. Science of the Total Environment 622–623: 756–763. https://doi.org/10.1016/j.scitotenv.2017.12.006 PMID: 29223902
Martínez-Rica J, Recoder PM (1990) Biogeographic features of the Pyrenean range. Mountain Research and Development 10: 235–240.
Martínez-Rica JP (1980) Algunos datos sobre las poblaciones meridionales del tritón pirenaico Euproctus asper Dugés. Studia Oecologica 2: 135–154.
Charrier O, Dupont P, Pornon A, Escaravage N (2014) Microsatellite marker analysis reveals the complex phylogeographic history of Rhododendron ferrugineum (Ericaceae) in the Pyrenees. PLoS ONE 9: e92976. https://doi.org/10.1371/journal.pone.0092976 PMID: 24667824
Bidegaray-Batista L, Sánchez-gracia A, Santulli G, Maiorano L, Guisan A, Vogler AP, et al. (2016) Imprints of multiple glacial refugia in the Pyrenees revealed by phylogeography and palaeodistribution modelling of an endemic spider. Molecular Ecology 25: 2046–2064. https://doi.org/10.1111/mec.13585PMID: 26878195
Schmitt T, Hewitt GM, MÜLler P (2006) Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. Journal of Evolutionary Biology 19: 108–113. https://doi.org/10.1111/j.1420-9101.2005.00980.x PMID: 16405582
Valbuena-Ureña E, Amat F, Carranza S (2013) Integrative phylogeography of Calotriton newts (Amphibia, Salamandridae), with special remarks on the conservation of the endangered Montseny brook newt (Calotriton arnoldi). PLoS ONE 8: e62542. https://doi.org/10.1371/journal.pone.0062542PMID: 23750201
Mouret V, Guillaumet A, Cheylan M, Pottier G, Ferchaud AL, Crochet PA (2011) The legacy of ice ages in mountain species: post-glacial colonization of mountain tops rather than current range fragmentation determines mitochondrial genetic diversity in an endemic Pyrenean rock lizard. Journal of Biogeography 38: 1717–1731.
Oromi N, Richter-Boix A, Sanuy D, Fibla J (2012) Genetic variability in geographic populations of the natterjack toad (Bufo calamita). Ecology and Evolution 2: 2018–2026. https://doi.org/10.1002/ece3.323PMID: 22957202
Conord C, Gurevitch J, Fady B (2012) Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecology and Evolution 2: 2600–2614. https://doi.org/10.1002/ece3.350 PMID: 23145344
Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science(Washington) 236: 787–792.
Steinfartz S, Weitere M, Tautz D (2007) Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest. Molecular Ecology 16: 4550–4561. https://doi.org/10.1111/j.1365-294X.2007.03490.x PMID: 17877714
Bonin A, Taberlet P, Miaud C, Pompanon F (2006) Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Molecular Biology and Evolution 23: 773–783. https://doi.org/10.1093/molbev/msj087 PMID: 16396915
Hendrix R, Schmidt BR, Schaub M, Krause ET, Steinfartz S (2017) Differentiation of movement behav-iour in an adaptively diverging salamander population. Molecular Ecology 26: 6400–6413. https://doi.org/10.1111/mec.14345 PMID: 28881403
Savage WK, Fremier AK, Bradley Shaffer H (2010) Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time. Molecular Ecology 19: 3301–3314. https://doi.org/10.1111/j.1365-294X.2010.04718.x PMID: 20701683
Zeisset I, Beebee TJC (2008) Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity 101: 109–119. https://doi.org/10.1038/hdy.2008.30 PMID: 18493262
Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28: 110–128.
Sánchez-Montes G, Jinliang W, AA H., Martínez-Solano Í (2018) Mountains as barriers to gene flow in amphibians: Quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits. Journal of Biogeography 45: 318–331.
Sinsch U, Oromi N, Miaud C, Denton J, Sanuy D (2012) Connectivity of local amphibian populations: modelling the migratory capacity of radio-tracked natterjack toads. Animal Conservation 15: 388–396.
Seppä P, Laurila A (1999) Genetic structure of island populations of the anurans Rana temporaria and Bufo bufo. Heredity 82: 309–317. PMID: 10336706
Vos CC, Antonisse-De Jong AG, Goedhart PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86: 598–608. PMID: 11554976
Valbuena-Urena E, Soler-Membrives A, Steinfartz S, Orozco-terWengel P, Carranza S (2017) No signs of inbreeding despite long-term isolation and habitat fragmentation in the critically endangered Montseny brook newt (Calotriton arnoldi). Heredity 118: 424–435. https://doi.org/10.1038/hdy.2016.123PMID: 28074844
Bosch J, Tejedo M, Lecis R, Miaud C, Lizana M, Edgar P, et al. (2009) Calotriton asper. IUCN 2012: IUCN Red List of Threatened Species. Version 2012.1.
Montori A, Llorente GA (2014) Tritón pirenaico–Calotriton asper (Dugès, 1852). In: Salvador A, Martí-nez-Solano I, editors. Enciclopedia Virtual de los Vertebrados. Madrid: Museo Nacional de Ciencias Naturales. pp. 28.
Clergue-Gazeau M, Martínez-Rica J (1978) Les différents biotopes de l’urodèle pyrénéen, Euproctus asper. Bulletin de la Sociétè d’Histoire Naturelle de Tolouse 114: 461–471.
Montori A (1988) Estudio sobre la biología y ecología del tritón pirenaico Euproctus asper (Dugès, 1852) en La Cerdanya: Universitat de Barcelona. 486 p.
Montori A, Llorente GA, Richter-Boix A (2008) Habitat features affecting the small-scale distribution and longitudinal migration patterns of Calotriton asper in a Pre-Pyrenean population. Amphibia-Reptilia 29: 371–381.
Milá B, Carranza S, Guillaume O, Clobert J (2010) Marked genetic structuring and extreme dispersal limitation in the Pyrenean brook newt Calotriton asper (Amphibia: Salamandridae) revealed by genome-wide AFLP but not mtDNA. Molecular Ecology 19: 108–120. https://doi.org/10.1111/j.1365294X.2009.04441.x PMID: 19943891
Oromi N, Amat F, Sanuy D, Carranza S (2014) Life history trait differences between a lake and a stream-dwelling population of the Pyrenean brook newt (Calotriton asper). Amphibia-Reptilia 35: 53–62.
Arribas Ó (2004) Fauna y paisaje de los Pirineos en la Era Glaciar. Barcelona: Lynx Edicions. 540 p.
Ferchaud A-L, Eudeline R, Arnal V, Cheylan M, Pottier G, Leblois R, et al. (2015) Congruent signals of population history but radically different patterns of genetic diversity between mitochondrial and nuclear markers in a mountain lizard. Molecular Ecology 24: 192–207. https://doi.org/10.1111/mec.13011PMID: 25410208
Dreiss AN, Guillaume O, Clobert J (2009) Diverging Cave- and River-Dwelling Newts Exert the Same Mate Preference in their Native Light Conditions. Ethology 115: 1036–1045.
Miaud C, Guillaume O (2005) Variation in age, body size and growth among surface and cave-dwelling populations of the Pyrenean newt, Euproctus asper (Amphibia; Urodela). Herpetologica 61: 241–249.
Issartel J, Voituron Y, Guillaume O, Clobert J, Hervant F (2010) Selection of physiological and metabolic adaptations to food deprivation in the Pyrenean newt Calotriton asper during cave colonisation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 155: 77–83.
Arntzen JW, Smithson A, Oldham RS (1999) Marking and tissue sampling effects on body condition and survival in the newt Triturus cristatus. Journal of Herpetology 33: 567–576.
Drechsler A, Geller D, Freund K, Schmeller DS, Künzel S, Rupp O, et al. (2013) What remains from a 454 run: estimation of success rates of microsatellite loci development in selected newt species (Calotriton asper, Lissotriton helveticus, and Triturus cristatus) and comparison with Illumina-based approaches. Ecology and Evolution 3: 3947–3957. https://doi.org/10.1002/ece3.764 PMID: 24198952
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.
Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24: 621–631. https://doi.org/10.1093/molbev/msl191 PMID: 17150975
Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8: 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x PMID: 21585727
Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86: 485–486.
Lewis PO, Zaykin D (2000) Genetic data analysis: computer program for the analysis of allelic data, version 1.0. (d15). University of Connecticut, Storrs, Connecticut, USA.
Kalinowski ST (2005) Hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5: 187–189.
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x PMID: 28563791
Jost L (2008) GST and its relatives do not measure differentiation. Molecular Ecology 17: 4015–4026. PMID: 19238703
Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Molecular Ecology 19: 3845–3852. https://doi.org/10.1111/j.1365-294X.2010.04784.x PMID: 20735737
Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, et al. (2017) The K = 2 conundrum. Molecular Ecology 26: 3594–3602. https://doi.org/10.1111/mec.14187 PMID: 28544181
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959. PMID: 10835412
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14: 2611–2620. https://doi.org/10.1111/j.1365294X.2005.02553.x PMID: 15969739
Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.
Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 PMID: 17485429
Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4: 137–138.
Takezaki N, Nei M, Tamura K (2014) POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Molecular Biology and Evolution.
Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution 19: 153–170. PMID: 6571220
Belkhir K, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier (France): Laboratoire Génome, Populations, Interactions, CNRS UMR 5000: Université de Montpellier II.
Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220. PMID: 6018555
Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228. PMID: 9093870
Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genetics 6: 13. https://doi.org/10.1186/1471-2156-6-13 PMID: 15760479
Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources 10: 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x PMID: 21565056
Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Molecular Ecology Resources 8: 299–301. https://doi.org/10.1111/j.1471-8286.2007.01997.x PMID: 21585773
Dakin E, Avise J (2004) Microsatellite null alleles in parentage analysis. Heredity 93: 504–509. https://doi.org/10.1038/sj.hdy.6800545 PMID: 15292911
Ball SE, Bovero S, Sotgiu G, Tessa G, Angelini C, Bieby J, et al. (2017) Islands within an island: Population genetic structure of the endemic Sardinian newt, Euproctus platycephalus. Ecology and Evolution 7: 1190–1211. https://doi.org/10.1002/ece3.2665 PMID: 28303189
Chan LM, Zamudio KR (2009) Population differentiation of temperate amphibians in unpredictable environments. Molecular Ecology 18: 3185–3200. https://doi.org/10.1111/j.1365-294X.2009.04273.xPMID: 19573030
Sanchiz B (1977) Catálogo de los anfibios fósiles de España (Noviembre de 1977). Acta Geológica His-pánica 12: 103–107.
Lobo JM, Martínez-Solano I, Sanchiz B (2016) A review of the palaeoclimatic inference potential of Iberian Quaternary fossil batrachians. Palaeobiodiversity and Palaeoenvironments: 1–24.
Zhan A, Li C, Fu J (2009) Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China. BMC genetics 10: 17. https://doi.org/10.1186/1471-2156-10-17 PMID: 19358732
Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, et al. (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology 14: 483–496. https://doi.org/10.1111/j.1365-294X.2005.02426.x PMID: 15660939
Giordano AR, Ridenhour BJ, Storfer A (2007) The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Molecular Ecology 16: 1625–1637. https://doi.org/10.1111/j.1365-294X.2006.03223.x PMID: 17402978
Sánchez-Montes G, Wang J, Ariño AH, Martínez-Solano Í (2017) Mountains as barriers to gene flow in amphibians: Quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits. Journal of Biogeography.
Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conservation Biology 9: 753–760.
Clergue-Gazeau M (1971) L’euprocte pyrénéen. Conséquences de la vie cavernicole sur son dévelop-pement et sa reproduction. Annales de Spéléologie 26 825–960.
Manenti R, Ficetola GF, Marieni A, De Bernardi F (2011) Caves as breeding sites for Salamandra sala-mandra: habitat selection, larval development and conservation issues. North-Western Journal of Zoology 7: 304–309.
Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecology Letters 8: 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x PMID: 21352449
Carranza S, Amat F (2005) Taxonomy, biogeography and evolution of Euproctus (Amphibia: Salamandridae), with the resurrection of the genus Calotriton and the description of a new endemic species from the Iberian Peninsula. Zoological Journal of the Linnean Society 145: 555–582.
Campbell Grant EH, Nichols JD, Lowe WH, Fagan WF (2010) Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proceedings of the National Academy of Sciences 107: 6936–6940.
Montori A (2008) Algunas curiosidades de Calotriton asper. PeloBytes-Boletín electrónico de la Asociación Herpetológica Española. Madrid: Asociación Herpetológica Española. pp. 2–3.
Hillman SS, Drewes RC, Hedrick MS, Hancock TV (2013) Physiological vagility: correlations with dispersal and population genetic structure of amphibians. Physiological and Biochemical Zoology 87: 105–112. https://doi.org/10.1086/671109 PMID: 24457925
Schmitt T (2017) Molecular biogeography of the high mountain systems of europe: an overview. In: Catalan J, Ninot JM, Aniz MM, editors. High Mountain Conservation in a Changing World. Cham: Springer International Publishing. pp. 63–74.
Marí-Mena N, Lopez-Vaamonde C, Naveira H, Auger-Rozenberg M-A, Vila M (2016) Phylogeography of the Spanish moon moth Graellsia isabellae (Lepidoptera, Saturniidae). BMC Evolutionary Biology 16: 139. https://doi.org/10.1186/s12862-016-0708-y PMID: 27342978
Carranza S, Arribas O (2008) Genetic uniformity of Rana pyrenaica Serra-Cobo, 1993 across its distribution range: a preliminary study with mtDNA sequences. Amphibia-Reptilia 29: 579–582.
Montori A, Llorente GA, García-París M (2008) Allozyme differentiation among populations of the Pyrenean newt Calotriton asper (Amphibia: Caudata) does not mirror their morphological diversification. Zootaxa 1945: 39–50.
de Pous P, Montori A, Amat F, Sanuy D (2016) Range contraction and loss of genetic variation of the Pyrenean endemic newt Calotriton asper due to climate change. Regional Environmental Change 16: 995–1009.
Knapp RA, Matthews KR (2000) Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conservation Biology 14: 428–438.
Denoel M, Dzukic G, Kalezic ML (2005) Effects of widespread fish introductions on paedomorphic newts in Europe. Conservation Biology 19: 162–170.
Ventura M, Tiberti R, Buchaca T, Buñay D, Sabás I, Miró A (2017) Why should we preserve fishless high mountain lakes? In: Catalan J, Ninot JM, Aniz MM, editors. High Mountain Conservation in a Changing World. Cham: Springer International Publishing. pp. 181–205.
Miró A, Sabás I, Ventura M (2018) Large negative effect of non-native trout and minnows on Pyrenean lake amphibians. Biological Conservation 218: 144–153.
Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation 170: 56–63.
Schmeller DS, Merila J (2007) Demographic and genetic estimates of effective population and breeding size in the amphibian Rana temporaria. Conservation Biology 21: 142–151. https://doi.org/10.1111/j.1523-1739.2006.00554.x PMID: 17298520
Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Oxford: Blackwell. 642 p.
Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC, et al. (2017) Call for a paradigm shift in the genetic management of fragmented populations. Conservation Letters.