National Osteoporosis Foundation (NOF) (2003) Annual report 4: 21.
Larijani B, Hossein-Nezhad A, Mojtahedi A, Pajouhi M, Bastanhagh MH, Soltani A, Mirfezi SZ and Dashti R (2005) Normative data of bone mineral density in healthy population of Tehran, Iran: Across sectional study. BMC Musculoskele Disord 6:38.
Whealan KM, Kwak SD, Tedrow JR, Inoue K, Snyder BD (2000) Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J Bone Joint Surg Am 82:1240-51.
Singer K, Edmondstone S, Day R, Breidahl P, Price R (1995) Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region. Bone 17:167-74.
Brickmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine 14: 606-10. (Pubitemid 19157185)
Edmondson SJ, Singer KP, Day RE, Price RI, Breidahl PD (1997) Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Osteoporos Int 7: 142-8.
Ebbesen EN, Thomson JS, Beck-Nielson H, Nepper-Rasmussen HJ, Mosekilde L (1998) Vertebral bone density evaluated by dual-energy X-ray absorptiometry and quantitative computed tomography in vitro. Bone 23: 283-90.
Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry-Scientific review. JAMA, J Am Med Assoc 288:1789-97. (Pubitemid 35168145)
Whyne CM, Hu SS, Lotz JC (2001) Parametric finite element analysis of vertebral bodies affected by tumors. J Biomech 34: 1317-1324. (Pubitemid 32750642)
Tschirhart CE, Nagpurkar A, Whyne CM (2004) Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J Biomech 37: 653-660. (Pubitemid 38445027)
Tschirhart CE, Finkelstein JA, Whyne CM. Biomechanics of vertebral level, geometry, and transcortical tumors in the metastatic spine. J Biomech 40:46-54.
Liebschner MAK, Kopperdahl DL, Rosenberg WS, Keaveny TM. Finite element modeling of the human thoracolumbar spine. Spine 2003; 28: 559-65.
Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 2003; 33: 744-50.
Buckley JM, Loo K, Motherway J. comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 1907; 40: 767-74.
Keyak J.H, Rossi S.A, Jones K.A, Les C.M, Skinner H.B. Prediction of fracture location in the proximal femur using finite element model. Med Eng Phys 23 2001: 657-664. (Pubitemid 34072903)
Silva MJ, Keaveny TM, Hayes WC. Computed tomography-based finite element analysis predicts failure loads and fracture patterns. J Orthopedic Res 1998; 16: 300.
Kopperdahl DL, Morgan EF, Keaveny TM. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthopedic Res 2002; 19: 801-805.
Ulrich D, Van Rietbergen B, Laib A, Rueegesegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 1999; 25: 55-60. (Pubitemid 29322061)
Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech Eng 2001; 34: 569-77.