Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density–modulus relationship
Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling Effect of selected density–modulus relationship.pdf
Finite element modeling; Elastic modulus of bone; Density–modulus relationships for bone; Proximal tibia; Model validation
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Nazemi, Sayed Majid ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Amini, Morteza
Kontulainen, Saija A.
Milner, Jaques S.
Holdsworth, David W.
Masri, Bassam A.
Wilson, David R.
Johnston, James D.
Language :
English
Title :
Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density–modulus relationship
M.J. Anderson, J.H. Keyak, and H.B. Skinner Compressive mechanical properties of human cancellous bone after gamma irradiation J. Bone Joint Surg. Am. 74 1992 747 752
R.L. Austman, J.S. Milner, D.W. Holdsworth, and C.E. Dunning The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone J. Biomech. 41 2008 3171 3176
M. Bessho, I. Ohnishi, J. Matsuyama, T. Matsumoto, K. Imai, and K. Nakamura Prediction of strength and strain of the proximal femur by a CT-based finite element method J. Biomech. 40 2007 1745 1753
T.D. Brown, E.L. Radin, R.B. Martin, and D.B. Burr Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening J. Biomech. 17 1984 11 24
D.R. Carter, and W.C. Hayes The compressive behavior of bone as a two-phase porous structure J. Bone Joint Surg. 59 1977 954 962
S. Eberle, M. Göttlinger, and P. Augat An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones Med. Eng. Phys. 35 2013 875 883
W.B. Edwards, and K.L. Troy Finite element prediction of surface strain and fracture strength at the distal radius Med. Eng. Phys. 34 2012 290 298
W.B. Edwards, T.J. Schnitzer, and K.L. Troy Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT J. Biomech. 46 2013 1655 1662
J.B. Finlay, R.B. Bourne, W.J. Kraemer, T.K. Moroz, and C.H. Rorabeck Stiffness of bone underlying the tibial plateaus of osteoarthritic and normal knees Clin. Orthop. Relat. Res. 247 1989 193 201
R.W. Goulet, S.A. Goldstein, M.J. Ciarelli, J.L. Kuhn, M.B. Brown, and L.A. Feldkamp The relationship between the structural and orthogonal compressive properties of trabecular bone J. Biomech. 27 1994 375 389
H.A. Gray, F. Taddei, A.B. Zavatsky, L. Cristofolini, and H.S. Gill Experimental validation of a finite element model of a human cadaveric tibia J. Biomech. Eng. 130 2008 2913335
Y. Harada, H.W. Wevers, and T.D. Cooke Distribution of bone strength in the proximal tibia J. Arthroplasty 3 1988 167 175
B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjólfsson, and M. Viceconti Mathematical relationships between bone density and mechanical properties: a literature review Clin. Biomech. 23 2008 135 146
B. Helgason, F. Taddei, H. Pálsson, E. Schileo, L. Cristofolini, M. Viceconti, and S. Brynjólfsson A modified method for assigning material properties to FE models of bones Med. Eng. Phys. 30 2008 444 453
W. Herzog, S. Diet, E. Suter, P. Mayzus, T.R. Leonard, C. Muller, J.Z. Wu, and M. Epstein Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis J. Biomech. 31 1998 1137 1145
R. Hodgskinson, and J.D. Currey Young's modulus, density and material properties in cancellous bone over a large density range J. Mater. Sci. Mater. Med. 3 1992 377 381
J.D. Johnston, B.A. Masri, and D.R. Wilson Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings Osteoarthr. Cartil. 17 2009 1319 1326
J.D. Johnston, S.A. Kontulainen, B.A. Masri, and D.R. Wilson Predicting subchondral bone stiffness using a depth-specific QCT topographic mapping technique in normal and osteoarthritic proximal tibiae Clin. Biomech. 26 2011 7
T.S. Keller Predicting the compressive mechanical behavior of bone Journal of Biomechanics 27 1994 1159 1168
J.H. Keyak Improved prediction of proximal femoral fracture load using nonlinear finite element models Med. Eng. Phys. 23 2001 165 173
J.H. Keyak, I.Y. Lee, and H.B. Skinner Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures J. Biomed. Mater. Res. 28 1994 1329 1336
J.H. Keyak, S.A. Rossi, K.A. Jones, and H.B. Skinner Prediction of femoral fracture load using automated finite element modeling J. Biomech. 31 1997 125 133
J.E.M. Koivumäki, J. Thevenot, P. Pulkkinen, V. Kuhn, T.M. Link, F. Eckstein, and T. Jämsä Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur Bone 50 2012 824 829
L. Lenaerts, A.J. Wirth, and G.H. van Lenthe Quantification of trabecular spatial orientation from low-resolution images Comput. Methods Biomech. Biomed. Engin. 2 2014 1 8
M. Lengsfeld, J. Schmitt, P. Alter, J. Kaminsky, and R. Leppek Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation Med. Eng. Phys. 20 1998 515 522
F. Linde, P. Norgaard, I. Hvid, A. Odgaard, and K. Soballe Mechanical properties of trabecular bone. Dependency on strain rate J. Biomech. 24 1991 803 809
F. Linde, I. Hvid, and F. Madsen The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens J. Biomech. 25 1992 359 368
R.B. Little, H.W. Wevers, D. Siu, and T.D. Cooke A three-dimensional finite element analysis of the upper tibia J. Biomech. Eng. 108 1986 111 119
D.D. McErlain, J.S. Milner, T.G. Ivanov, L. Jencikova-Celerin, S.I. Pollmann, and D.W. Holdsworth Subchondral cysts create increased intra-osseous stress in early knee OA: a finite element analysis using simulated lesions Bone 48 2011 639 646
B.E. McKoy, Q. Kang, and Y.H. An Indentation testing of bone Y.H. An, R.A. Draughns, Mechanical Testing of Bone and the Bone-Implant Interface 2000 CRC Press Boca Raton 233 256
M. Mirzaei, M. Keshavarzian, and V. Naeini Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method Bone 64 2014 108 114
E.F. Morgan, H.H. Bayraktar, and T.M. Keaveny Trabecular bone modulus-density relationships depend on anatomic site J. Biomech. 36 2003 897 904
K.K. Nishiyama, S. Gilchrist, P. Guy, P. Cripton, and S.K. Boyd Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration J. Biomech. 46 2013 1231 1236
E.L. Radin, and R.M. Rose Role of subchondral bone in the initiation and progression of cartilage damage Clin. Orthop. Relat. Res. 1986 34 40
E.L. Radin, I.L. Paul, and R.M. Rose Role of mechanical factors in pathogenesis of primary osteoarthritis Lancet 1 1972 519 522
J.-Y. Rho An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone Ultrasonics 34 1996 777 783
J.Y. Rho, M.C. Hobatho, and R.B. Ashman Relations of mechanical properties to density and CT numbers in human bone Med. Eng. Phys. 17 1995 347 355
E. Schileo, F. Taddei, A. Malandrino, L. Cristofolini, and M. Viceconti Subject-specific finite element models can accurately predict strain levels in long bones J. Biomech. 40 2007 2982 2989
S.M. Snyder, and E. Schneider Estimation of mechanical properties of cortical bone by computed tomography J. Orthop. Res. 9 1991 422 431
Z. Tabor, and E. Rokita Quantifying anisotropy of trabecular bone from gray-level images Bone 40 2007 966 972
F. Taddei, A. Pancanti, and M. Viceconti An improved method for the automatic mapping of computed tomography numbers onto finite element models Med. Eng. Phys. 26 2004 61 69
F. Taddei, L. Cristofolini, S. Martelli, H.S. Gill, and M. Viceconti Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy J. Biomech. 39 2006 2457 2467
S.J. Theodorou, D.J. Theodorou, and D. Resnick Osteonecrosis of the patella: diagnostic imaging perspective J. Comput. Assist. Tomogr. 29 2005 87 93
N. Trabelsi, and Z. Yosibash Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments J. Biomech. Eng. 133 2011 4004180
N. Trabelsi, Z. Yosibash, C. Wutte, P. Augat, and S. Eberle Patient-specific finite element analysis of the human femur - a double-blinded biomechanical validation J. Biomech. 44 2011 1666 1672
M. Tuncer, U.N. Hansen, and A.A. Amis Prediction of structural failure of tibial bone models under physiological loads: effect of CT density-modulus relationships Med. Eng. Phys. 36 2014 991 997
M. Viceconti, L. Bellingeri, L. Cristofolini, and A. Toni A comparative study on different methods of automatic mesh generation of human femurs Med. Eng. Phys. 20 1998 1 10
J.P. Yang, E.R. Bogoch, T.D. Woodside, and T.C. Hearn Stiffness of trabecular bone of the tibial plateau in patients with rheumatoid arthritis of the knee J. Arthroplasty 12 1997 798 803
Z. Yosibash, N. Trabelsi, and C. Milgrom Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations J. Biomech. 40 2007 3688 3699
P.K. Zysset, M. Sonny, and W.C. Hayes Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia J. Arthroplast. 9 1994 203 216