Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia
Nazemi, Sayed Majid; Kalajahi, S. Mehrdad Hosseini; Cooper, David M. L.et al.
2017 • In Journal of Biomechanics, 59, p. 101 - 108
Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.pdf
Finite element modeling; Anisotropy; Quantitative Computed Tomography; Proximal tibia; Subchondral bone stiffness
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Nazemi, Sayed Majid ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Kalajahi, S. Mehrdad Hosseini
Cooper, David M. L.
Kontulainen, Saija A.
Holdsworth, David W.
Masri, Bassam A.
Wilson, David R.
Johnston, James D.
Language :
English
Title :
Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia
Amirreza, P., Normand, R., Jeffrey, F., Asmaa, M., Cari, W., Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images. Phys. Med. Biol., 57, 2012, 8099.
Anderson, M.J., Keyak, J.H., Skinner, H.B., Compressive mechanical properties of human cancellous bone after gamma irradiation. J. Bone Joint Surg. Am. 74 (1992), 747–752.
Ashman, R.B., Rho, J.Y., Turner, C.H., Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J. Biomech. 22 (1989), 895–900.
Carter, D.R., Hayes, W.C., The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. 59 (1977), 954–962.
Chappard, C., Peyrin, F., Bonnassie, A., Lemineur, G., Brunet-Imbault, B., Lespessailles, E., Benhamou, C.L., Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarth. Cartil. 14 (2006), 215–223.
Choi, K., Kuhn, J.L., Ciarelli, M.J., Goldstein, S.A., The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J. Biomech. 23 (1990), 1103–1113.
Cowin, S.C., The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4 (1985), 137–147.
Day, J.S., Ding, M., van der Linden, J.C., Hvid, I., Sumner, D.R., Weinans, H., A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J. Orthop. Res. 19 (2001), 914–918.
Ding, M., Odgaard, A., Hvid, I., 2003. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. Bone Joint Surg. 85-B, 906–912.
Duncan, H., Jundt, J., Riddle, J.M., Pitchford, W., Christopherson, T., The tibial subchondral plate. A scanning electron microscopic study. J. Bone Joint Surg. 69 (1987), 1212–1220.
Edwards, W.B., Schnitzer, T.J., Troy, K.L., Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT. J. Biomech. 46 (2013), 1655–1662.
Enns-Bray, W.S., Owoc, J.S., Nishiyama, K.K., Boyd, S.K., Mapping anisotropy of the proximal femur for enhanced image based finite element analysis. J. Biomech. 47 (2014), 3272–3278.
Goldring, S.R., Role of bone in osteoarthritis pathogenesis. Med. Clin. North Am. 93 (2009), 25–35.
Goulet, R.W., Goldstein, S.A., Ciarelli, M.J., Kuhn, J.L., Brown, M.B., Feldkamp, L.A., The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27 (1994), 375–389.
Gray, H.A., Taddei, F., Zavatsky, A.B., Cristofolini, L., Gill, H.S., Experimental validation of a finite element model of a human cadaveric tibia. J. Biomech. Eng., 130, 2008, 2913335.
Gross, T., Pahr, D., Zysset, P., Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations. Biomech. Model. Mechanobiol. 12 (2013), 793–800.
Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjolfsson, S., Viceconti, M., Mathematical relationships between bone density and mechanical properties: a literature review. Clin. Biomech. (Bristol, Avon) 23 (2008), 135–146.
Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjólfsson, S., Viceconti, M., Mathematical relationships between bone density and mechanical properties: a literature review. Clin. Biomech. 23 (2008), 135–146.
Herzog, W., Diet, S., Suter, E., Mayzus, P., Leonard, T.R., Muller, C., Wu, J.Z., Epstein, M., Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. J. Biomech. 31 (1998), 1137–1145.
Hodgskinson, R., Currey, J.D., Young's modulus, density and material properties in cancellous bone over a large density range. J. Mater. Sci. - Mater. Med. 3 (1992), 377–381.
Homminga, J., McCreadie, B.R., Weinans, H., Huiskes, R., The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J. Biomech. 36 (2003), 1461–1467.
Johnston, J., McLennan, C., Hunter, D., Wilson, D., In vivo precision of a depth-specific topographic mapping technique in the CT analysis of osteoarthritic and normal proximal tibial subchondral bone density. Skeletal Radiol. 40 (2011), 1057–1064.
Johnston, J.D., Kontulainen, S.A., Masri, B.A., Wilson, D.R., Predicting subchondral bone stiffness using a depth-specific CT topographic mapping technique in normal and osteoarthritic proximal tibiae. Clin. Biomech. 26 (2011), 1012–1018.
Johnston, J.D., Masri, B.A., Wilson, D.R., Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings. Osteoarth. Cartil. 17 (2009), 1319–1326.
Kabel, J., van Rietbergen, B., Odgaard, A., Huiskes, R., Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25 (1999), 481–486.
Keller, T.S., Predicting the compressive mechanical behavior of bone. J. Biomech. 27 (1994), 1159–1168.
Kersh, M.E., Zysset, P.K., Pahr, D.H., Wolfram, U., Larsson, D., Pandy, M.G., Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J. Biomech. 46 (2013), 2659–2666.
Kersh, M.E., Zysset, P.K., Pahr, D.H., Wolfram, U., Larsson, D., Pandy, M.G., Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J. Biomech. 46 (2013), 2659–2666.
Keyak, J.H., Lee, I.Y., Skinner, H.B., Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J. Biomed. Mater. Res. 28 (1994), 1329–1336.
Larsson, D., Luisier, B., Kersh, M., Dall'Ara, E., Zysset, P., Pandy, M., Pahr, D., Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor. Ann. Biomed. Eng. 42 (2014), 950–959.
Larsson, D., Luisier, B., Kersh, M.E., Dall'ara, E., Zysset, P.K., Pandy, M.G., Pahr, D.H., Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor. Ann. Biomed. Eng. 42 (2014), 950–959.
Li, B., Aspden, R.M., Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J. Bone Miner. Res. 12 (1997), 641–651.
Linde, F., Hvid, I., Madsen, F., The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. J. Biomech. 25 (1992), 359–368.
Little, R.B., Wevers, H.W., Siu, D., Cooke, T.D., A three-dimensional finite element analysis of the upper tibia. J. Biomech. Eng. 108 (1986), 111–119.
Maquer, G., Musy, S.N., Wandel, J., Gross, T., Zysset, P.K., Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. J. Bone Miner. Res. 30 (2015), 1000–1008.
Milz, S., Putz, R., Quantitative morphology of the subchondral plate of the tibial plateau. J. Anat. 185 (1994), 103–110.
Morgan, E.F., Bayraktar, H.H., Keaveny, T.M., Trabecular bone modulus–density relationships depend on anatomic site. J. Biomech. 36 (2003), 897–904.
Nazemi, S.M., Amini, M., Kontulainen, S.A., Milner, J.S., Holdsworth, D.W., Masri, B.A., Wilson, D.R., Johnston, J.D., Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: effect of selected density–modulus relationship. Clin. Biomech. 30 (2015), 703–712.
Nazemi, S.M., Cooper, D.M.L., Johnston, J.D., Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: a feasibility study. Med. Eng. Phys. 38:9 (2016), 978–987.
Nelder, J.A., Mead, R., A simplex method for function minimization. Comput. J. 7 (1965), 308–313.
Rho, J.-Y., An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics 34 (1996), 777–783.
Rho, J.Y., Hobatho, M.C., Ashman, R.B., Relations of mechanical properties to density and CT numbers in human bone. Med. Eng. Phys. 17 (1995), 347–355.
Robinson, D.L., Kersh, M.E., Walsh, N.C., Ackland, D.C., de Steiger, R.N., Pandy, M.G., Mechanical properties of normal and osteoarthritic human articular cartilage. J. Mech. Behav. Biomed. Mater. 61 (2016), 96–109.
San Antonio, T., Ciaccia, M., Müller-Karger, C., Casanova, E., Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions. Med. Eng. Phys. 34 (2012), 914–919.
Snyder, S.M., Schneider, E., Estimation of mechanical properties of cortical bone by computed tomography. J. Orthop. Res. 9 (1991), 422–431.
Synek, A., Chevalier, Y., Baumbach, S.F., Pahr, D.H., The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: evaluations and comparison to experiments. J. Biomech. 48:15 (2015), 4116–4123.
Tabor, Z., Equivalence of mean intercept length and gradient fabric tensors – 3d study. Med. Eng. Phys. 34 (2012), 598–604.
Tabor, Z., Petryniak, R., Latała, Z., Konopka, T., The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone. Med. Eng. Phys. 35 (2013), 7–15.
Tabor, Z., Rokita, E., Quantifying anisotropy of trabecular bone from gray-level images. Bone 40 (2007), 966–972.
Unnikrishnan, G.U., Barest, G.D., Berry, D.B., Hussein, A.I., Morgan, E.F., Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra. J. Biomech. Eng., 135, 2013, 101007.
Yang, H., Ma, X., Guo, T., Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur. Med. Eng. Phys. 32 (2010), 553–560.
Zysset, P.K., Curnier, A., An alternative model for anisotropic elasticity based on fabric tensors. Mech. Mater. 21 (1995), 243–250.
Zysset, P.K., Sonny, M., Hayes, W.C., Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia. J. Arthroplast. 9 (1994), 203–216.