Brickmann P., Biggemann M., and Hilweg D. Prediction of the compressive strength of human lumbar vertebrae. Spine 14 (1989) 606-610
Buckley J.M., Loo K., and Motherway J. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40 (2007) 767-774
Crawford R.P., Cann C.E., and Keaveny T.M. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33 (2003) 744-750
Cummings S.R., Bates D., and Black D.M. Clinical use of bone densitometry-scientific review. Journal of American Medical Association 288 (2002) 1889-1897
Ebbesen E.N., Thomson J.S., Beck-Nielson H., Nepper-Rasmussen H.J., and Mosekilde L. Vertebral bone density evaluated by dual-energy X-ray absorbtiometry and quantitative computed tomography in vitro. Bone 23 (1998) 283-290
Edmondson S.J., Singer K.P., Day R.E., Price R.I., and Breidahl P.D. Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Osteoporosis International 7 (1997) 142-148
Galibert P., Deramond H., Rosat P., and Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 33 (1987) 166-168
Imai K., Isao O., Masahiko B., and Nakamura K. Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine 31 16 (2006) 1789-1794
Kaneko T.S., Bell J.S., Pejcic M.R., Tehranzadeh J., and Keyak J.H. Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases. Journal of Biomechanics 37 (2004) 523-530
Kaneko T.S., Pejcic M.R., Tehranzadeh J., and Keyak J.H. Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions. Medical Engineering & Physics 25 (2003) 445-454
Kopperdahl D.L., and Keaveny T.M. Yield strain behavior of trabecular bone. Journal of Biomechanics 31 (1998) 601-608
Kopperdahl D.L., Morgan E.F., and Keaveny T.M. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. Journal of Orthopedic Research 20 (2002) 801-805
Liebschner M.A.K., Rosenberg W.S., and Keaveny T.M. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine 26 14 (2001) 1547-1554
Liebschner M.A.K., Kopperdahl D.L., Rosenberg W.S., and Keaveny T.M. Finite element modeling of the human thoracolumbar spine. Spine 28 (2003) 559-565
McGraw J.K., Barr J.D., Mathis J.M., and Sacks D. Society of interventional radiology quality improvement guidelines for percutaneous vertebroplasty. Journal of Vascular and Interventional Radiology 14 (2003) 827-831
Morgan E.F., and Keaveny T.M. Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics 34 (2001) 569-577
National Osteoporosis Foundation (NOF), 2003. Annual report 4, 21.
Silva M.J., Keaveny T.M., and Hayes W.C. Computed tomography-based finite element analysis predicts failure loads and fracture patterns of vertebral sections. Journal of Orthopaedic Research 16 (1998) 300-308
Singer K., Edmondstone S., Day R., Breidahl P., and Price R. Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region. Bone 17 (1995) 167-174
Snyder B.D., Hipp J.A., and Nazarian A. Non-invasive imaging predicts fracture risk due to metastatic skeletal defects. The Orthopaedic Journal at Harvard Medical School (2004) 87-94
Stolken J.S., and Kinney J.H. On the importance of geometric nonlinearity in finite element simulations of trabecular bone failure. Bone 33 (2003) 496-504
Sun K., and Liebschner M.A.K. Evolution of vertebroplasty: a biomechanical perspective. Annals of Biomedical Engineering 32 1 (2004) 77-91
Tschirhart C.E., Finkelstein J.A., and Whyne C.M. Biomechanics of vertebral level, geometry, and transcortical tumors in the metastatic spine. Journal of Biomechanics 40 (2007) 46-54
Tschirhart C.E., Nagpurkar A., and Whyne C.M. Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. Journal of Biomechanics 37 (2004) 653-660
Tschirhart C.E., Roth S.E., and Whyne C.M. Biomechanical assessment of stability in the metastatic spine following percutaneous vertebroplasty: effects of cement distribution patterns and volume. Journal of Biomechanics 38 (2005) 1582-1590
Ulrich D., Van Rietbergen B., Laib A., and Rueegesegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25 (1999) 55-60
Von Stechow D., Nazarian A., Zurakowski D., Muller R., and Snyder B.D. Metastatic cancer bone tissue behaves mechanically as a rigid porous foam. Transactions of the Orthopaedic Research Society 28 (2003) 995
Whealan K.M., Kwak S.D., Tedrow J.R., Inoue K., and Snyder B.D. Non-invasive imaging predicts failure load of the spine with simulated osteolytic defects. Journal of Bone and Joint Surgery-America 82 (2000) 1240-1251
Whyne C.M., Hu S.S., and Lotz J.C. Parametric finite element analysis of vertebral bodies affected by tumors. Journal of Biomechanics 34 (2001) 1317-1324
Zoarski G.H., Olan W.J., Stallmeyer M.J., Dick B.W., and Deyne M. Percutaneous vertebroplasty for osteoporotic compression fractures: quantitative prospective evaluation of long-term outcomes. Journal of Vascular and Interventional Radiology 13 (2002) 139-148