Barka, E.A., Vatsa, P., Sanchez, L., Gavaut-Vaillant, N., Jacquard, C., Klenk, H.P., Clément, C., van Wezel, G.P., Taxonomy, physiology, and natural products of the Actinobacteria (2016) Microbiol. Mol. Biol. Rev, 80, pp. 1-43
Bérdy, J., Bioactive microbial metabolites (2005) J. Antibiot. (Tokyo), 58, pp. 1-26
Blondelet-Rouault, M.H., Weiser, J., Lebrihi, A., Branny, P., Pernodet, J.L., Antibiotic resistance gene cassettes derived from the omega interposon for use in E. Coli and Streptomyces (1997) Gene, 190, pp. 315-317
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
Colson, S., Stephan, J., Hertrich, T., Saito, A., van Wezel, G.P., Titgemeyer, F., Rigali, S., Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements (2007) J. Mol. Microbiol. Biotechnol., 12, pp. 60-66
Colson, S., van Wezel, G.P., Craig, M., Noens, E.E.E., Nothaft, H., Mommaas, A.M., Titgemeyer, F., Rigali, S., The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor A3(2) (2008) Microbiology, 154, pp. 373-382
Derouaux, A., Dehareng, D., Lecocq, E., Crp of Streptomyces coelicolor is the third transcription factor for the large CRP-FNR superfamily able to bind cAMP (2014) Biochem. Biophys. Res. Commun., 325, pp. 983-990
Ferenci, T., Muir, M., Lee, K.-S., Maris, D., Substrate specificity of the Escherichia coli maltodextrin transport system and its component proteins (1986) Biochim. Biophys. Acta, 860, pp. 44-50
Fillenberg, S.B., Friess, M.D., Körner, S., Böckmann, R.A., Muller, Y.A., Crystal structures of the global regulator DasR from Streptomyces coelicolor: Implications for the allosteric regulation of GntR/HutC repressors (2016) Plos One, 11
Fukamizo, T., Amano, S., Yamaguchi, K., Bacillus circulans MH-K1 chitosanase: Amino acid residues responsible for substrate binding (2005) J. Biochem., 138, pp. 563-569
Guimond, J., Morosoli, R., Identification of Streptomyces lividans proteins secreted by the twin-arginine translocation pathway following growth with different carbon sources (2008) Can. J. Microbiol., 54, pp. 549-558
Hodgson, D.A., Primary metabolism and its control in streptomycetes: A most unusual group of bacteria (2000) Adv. Microb. Physiol., 42, pp. 47-238
Hurtubise, Y., Shareck, F., Kluepfel, D., Morosoli, R., A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins (1995) Mol. Microbiol., 17, pp. 367-377
Kubota, T., Miyamoto, K., Yasuda, M., Inamori, Y., Tsujibo, H., Molecular characterization of an intracellular β-N-acetylglucosaminidase involved in the chitin degradation system of Streptomyces thermoviolaceus OPC-520 (2004) Biosci. Biotechnol. Biochem., 68, pp. 1306-1314
Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
Liao, C., Rigali, S., Cassani, C.L., Marcellin, E., Nielsen, L.K., Ye, B.C., Control of chitin and N-acetylglucosamine utilization in Saccharopolyspora erythraea (2014) Microbiology, 160, pp. 1914-1928
Macneil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G., Gibbons, P.H., Macneil, T., Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector (1992) Gene, 111, pp. 61-68
Miyashita, K., Fujii, T., Sawada, Y., Molecular cloning and characterization of chitinase genes from Streptomyces lividans 66 (1991) J. Gen. Microbiol., 137, pp. 2065-2072
Miyashita, K., Fujii, T., Saito, A., Induction and repression of a Streptomyces lividans chitinase gene promoter in response to various carbon sources (2000) Biosci. Biotechnol. Biochem., 64, pp. 39-43
Nakagawa, Y.S., Kudo, M., Loose, J.S.M., Ishikawa, T., Totani, K., Eijsink, V.G., Vaaje-Kolstad, G., A small lytic polysaccharide monooxygenase from Streptomyces griseus targeting a-and b-chitin (2015) FEBS J, 282, pp. 1065-1079
Nazari, B., Saito, A., Kobayashi, M., Miyashita, K., Wang, Y., Fujii, T., High expression levels of chitinase genes in Streptomyces coelicolor A3(2) grown in soil (2012) FEMS Microbiol. Ecol., 77, pp. 623-635
Nazari, B., Kobayashi, M., Saito, A., Hassaninasab, A., Miyashita, K., Fujii, T., Chitin induces gene expression in secondary metabolic pathways in Streptomyces coelicolor A3(2) grown in soil (2013) Appl. Environ. Microbiol., 79, pp. 707-713
Nothaft, H., Rigali, S., Boomsma, B., Swiatek, M., McDowall, K.J., van Wezel, G.P., Titgemayer, F., The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subjected to multi-level control (2010) Mol. Microbiol., 75, pp. 1133-1144
Quiocho, F.A., Spurlino, J.C., Rodseth, L.E., Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor (1997) Structure, 5, pp. 997-1015
Rigali, S., Schlicht, M., Hoskisson, P., Nothaft, H., Merzbacher, M., Joris, B., Titgemeyer, F., Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships (2004) Nucleic Acids Res, 32, pp. 3418-3426
Rigali, S., Nothaft, H., Noens, E.E., The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development (2006) Mol. Microbiol., 61, pp. 1237-1251
Saito, A., Fujii, T., Miyashita, K., Chitinase system in Streptomyces (1999) Actinomycetologica, 13, pp. 1-10
Saito, A., Biucobić, G., Miyashita, K., Schrempf, H., Characteristics of a Streptomyces coelicolor A3(2) extracellular protein targeting chitin and chitosan (2001) Appl. Environ. Microbiol., 67, pp. 1268-1273
Saito, A., Schrempf, H., Mutational analysis of the binding affinity and transport activity for N-acetylglucosamine mediated by the novel ABC transporter Ngc within the chitin-degrader Streptomyces olivaceoviridis (2004) Mol. Genet. Genomics, 271, pp. 545-553
Saito, A., Shinya, T., Miyamoto, K., The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N,N′-diacetylchitobiose in Streptomyces coelicolor A3(2) (2007) Appl. Environ. Microbiol., 73, pp. 3000-3008
Saito, A., Fujii, T., Shinya, T., Shibuya, N., Ando, A., Miyashita, K., The msiK gene, encoding the ATP-hydrolyzing component of N,N′-diacetylchitobiose ABC transporters, is essential for induction of chitinase production in Streptomyces coelicolor A3(2) (2008) Microbiology, 154, pp. 3358-3365
Saito, A., Ebise, H., Orihara, Y., Enzymatic and genetic characterization of the DasD protein possessing N-acetyl-β-d-glucosaminidase activity in Streptomyces coelicolor A3(2) (2013) FEMS Microbiol. Lett., 340, pp. 33-40
Sambrook, J., Russell, D.W., (2001) Molecular Cloning: A Laboratory Manual, , 3rd ed. Cold Spring Harbor Laboratory Press, New York
Schlochtermeier, A., Walter, S., Schröder, J., Moorman, M., Schrempf, H., The gene encoding the cellulase (Avicelase) Cel1 from Streptomyces reticuli and analysis of protein domains (1992) Mol. Microbiol., 6, pp. 3611-3621
Schlösser, A., Kampers, T., Schrempf, H., The Streptomyces ATP-binding component MsiK assists in cellobiose and maltose transport (1997) J. Bacteriol., 179, pp. 2092-2095
Schlösser, A., MsiK-dependent trehalose uptake in Streptomyces reticuli (2000) FEMS Microbiol. Lett., 184, pp. 187-192
Schnellmann, J., Zeltins, A., Blaak, H., Schrempf, H., The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline a-chitin of fungi and other organisms (1994) Mol. Microbiol., 13, pp. 807-819
Świątek, M.A., Tenconi, E., Rigali, S., van Wezel, G.P., Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production (2012) J. Bacteriol., 194, pp. 1136-1144
Świątek, M.A., Gubbens, J., Bucca, G., Song, E., Yang, Y.H., Laing, E., Kim, B.G., van Wezel, G.P., The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in Streptomyces coelicolor (2013) J. Bacteriol., 195, pp. 1236-1248
Swiatek-Polatynska, M.A., Bucca, G., Laing, E., Gubbens, J., Titgemeyer, F., Smith, C.P., Rigali, S., van Wezel, G.P., Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets (2015) Plos One, 10
Aylor, R.G., Walker, D.C., McInnes, R.R., E. Coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing (1993) Nucleic Acids Res., 21, pp. 1677-1678
Tenconi, E., Urem, M., Świątek-Połatyńska, M.A., Titgemeyer, F., Muller, Y.A., van Wezel, G.P., Rigali, S., Multiple allosteric effectors control the affinity of DasR for its target sites (2015) Biochem. Biophys. Res. Commun., 464, pp. 324-329
Tsujibo, H., Hatano, N., Mikami, T., Hirasawa, A., Miyamoto, K., Inamori, Y., A novel β-N-acetylglucosaminidase from Streptomyces thermoviolaceus OPC-520: Gene cloning, expression, and assignment to family 3 of the glycosyl hydrolases (1998) Appl. Environ. Microbiol., 64, pp. 2920-2924
Vara, J., Lewandowska-Skarbek, M., Wang, Y.G., Donadio, S., Hutchinson, C.R., Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus) (1989) J. Bacteriol., 171, pp. 5872-5881
Viens, P., Debeau, M.P., Kimura, A., Desaki, Y., Shinya, T., Shibuya, N., Saito, A., Brzezinski, R., Uptake of chitosan-derived D-glucosamine oligosaccharides in Streptomyces coelicolor A3(2). FEMS Microbiol. Lett (2015) 362:Fnv048
Vrancken, K., Anné, J., Secretory production of recombinant proteins by Streptomyces (2009) Future Microbiol, 4, pp. 181-188
Wandersman, C., Schwartz, M., Ferenci, T., Escherichia coli mutants impaired in maltodextrin transport (1979) J. Bacteriol., 140, pp. 1-13
Wang, F., Xiao, X., Saito, A., Schrempf, H., Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine (2002) Mol. Genet. Genomics, 268, pp. 344-351
Wiseman, T., Williston, S., Brandts, J.F., Lin, L.N., Rapid measurement of binding constants and heats of binding using a new titration calorimeter (1989) Anal. Biochem., 179, pp. 131-137
Xiao, X., Wang, F., Saito, A., Majaka, J., Schlösser, A., Schrempf, H., The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N-acetylglucosamine and N,N′-diacetylchitobiose (2002) Mol. Genet. Genomics, 267, pp. 429-439
Yanisch-Perron, C., Vieira, J., Messing, J., Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors (1985) Gene, 33, pp. 103-119