Article (Scientific journals)
Effectiveness and limitations of computational chemistry and mass spectrometry in the rational design of target‐specific shift reagents for ion mobility spectrometry
Kune, Christopher; Haler, Jean; Far, Johann et al.
2018In Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry
Peer Reviewed verified by ORBi
 

Files


Full Text
Kune, Haler et al_2018_Effectiveness and limitations of computational chemistry and mass spectrometry in the rational design of target‐specific shift reagents for ion mobility spectrometry.pdf
Author preprint (1.02 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Computational Chemistry; Shift reagent design; Ion mobility; Mass spectrometry
Abstract :
[en] Ion mobility spectrometry (IMS) is a gas‐phase separation technique based on ion mobility differences in an electric field. It is largely used for the detection of specific ions such as small molecule explosives. IMS detection system includes the use of e.g. a Faraday plate or mass spectrometry (MS). The presence of interfering ion signals in standalone IMS may lead to the detection of false positives or negatives due to e.g. lacking resolving power. In this case, selective mobility shifts obtained using shift reagents (SR), i.e. ligands complexing a specific target, can bring help. The effectiveness of an SR strategy relies on the SR‐target ion selectivity. The crucial step lies in the SR design. The aim of this paper is to present an efficient interplay of experimental ion mobility mass spectrometry (IMMS) and predictive computational chemistry using various levels of computational efforts for rationally designing target‐specific SR. Mass spectrometry is used to evaluate the efficiency of the SR selectivity with identification and semi‐quantification of free and complexed ions. Minimal computational efforts allow the design of the SR, predict the SR‐target ion relative stabilities, and prediction of ion mobility shifts. We demonstrate our approach using crown ethers and β‐cyclodextrin to selectively shift interfering perchlorate, amino acids and diaminonaphthalene isomers. We also release the software ParsIMoS for straightforward use of ion mobility calculator IMoS.
Research center :
MolSys - Molecular Systems - ULiège
Disciplines :
Chemistry
Author, co-author :
Kune, Christopher   ;  Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Haler, Jean  ;  Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Far, Johann  ;  Université de Liège - ULiège > Département de chimie (sciences) > Center for Analytical Research and Technology (CART)
De Pauw, Edwin  ;  Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
 These authors have contributed equally to this work.
Language :
English
Title :
Effectiveness and limitations of computational chemistry and mass spectrometry in the rational design of target‐specific shift reagents for ion mobility spectrometry
Publication date :
02 August 2018
Journal title :
Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry
ISSN :
1439-4235
eISSN :
1439-7641
Publisher :
John Wiley & Sons, United Kingdom
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture [BE]
Available on ORBi :
since 06 August 2018

Statistics


Number of views
88 (18 by ULiège)
Number of downloads
1 (1 by ULiège)

Scopus citations®
 
10
Scopus citations®
without self-citations
7
OpenCitations
 
9

Bibliography


Similar publications



Contact ORBi