Mars; magnetic field; proton; hydrogen; precipitation; aurora
Abstract :
[en] We present model results of the interaction of proton and hydrogen atom precipitation with the Martian atmosphere. We use a kinetic Monte Carlo model developed earlier for the analysis of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) Mars Express data. With the availability of MarsAtmosphere and Volatile Evolution Mission in situ measurements, not only the flux of protons incident on theatmosphere but also their degradation along the orbit may now be described. The comparison of thesimulations with data collected with the Solar Wind Ion Analyzer shows that the Monte Carlo modelreproduces some of the measured features. The results of comparison between simulations andmeasurements of the proton fluxes at low altitudes make it possible to infer the efficiency of chargeexchange between solar wind and the extended hydrogen corona if the value of the magnetic field ismeasured simultaneously. We also find that the induced magnetic field plays a very important role in theformation of the backscattered flux and strongly controls its magnitude. At the same time, discrepancies between the modeled and the measured energy spectra of the backscattered protons are pointed out. We suggest that some of the physical processes controlling the upward flux are not fully understood or that the data processing of the measured backscattered proton flux should be improved
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Bisikalo, D.V.
Shematovich, V.
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Monte Carlo Simulations of the Interaction of Fast Proton and Hydrogen Atoms With the Martian Atmosphere and Comparison With In Situ Measurements
Akalin, F., Morgan, D. D., Gurnett, D. A., Kirchner, D. L., Brain, D. A., Modolo, R., et al. (2010). Dayside induced magnetic field in the ionosphere of Mars. Icarus, 206, 104–111. https://doi.org/10.1016/j.icarus.2009.03.021
Barabash, S., Lundin, R., Zarnowiecki, R., & Grzedzielski, S. (1995). Diagnostic of energetic neutral particles at Mars by the ASPERA-C instrument for the Mars 96 mission. Advances in Space Research, 16(4), 81–86. https://doi.org/10.1016/0273-1177(95)00212-W
Bertaux, J.-L., Leblanc, F., Witasse, O., Quemerais, E., Lilensten, J., Stern, S. A., et al. (2005). Discovery of an aurora on Mars. Nature, 435(7043), 790–794. https://doi.org/10.1038/nature03603
Bisikalo, D. V., Shematovich, V. I., & Gérard, J.-C. (1995). Kinetic model of the formation of the hot oxygen geocorona: 2. Influence of O+ ion precipitation. Journal of Geophysical Research, 100(A3), 3715–3720. https://doi.org/10.1029/94JA03196
Bisikalo, D. V., Shematovich, V. I., Gérard, J.-C., & Hubert, B. (2017). Influence of the crustal magnetic field on the Mars aurora electron flux and UV brightness. Icarus, 282, 127–135. https://doi.org/10.1016/j.icarus.2016.08.035
Brain, D. A., Bagenal, F., Acuna, M. H., & Connerney, J. E. P. (2003). Martian magnetic morphology: Contributions from the solar wind and crust. Journal of Geophysical Research, 108(A12), 1424. https://doi.org/10.1029/2002JA009482
Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., Bougher, S. W., Curry, S., et al. (2015). The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 42, 9142–9148. https://doi.org/10.1002/2015GL065293
Chaufray, J. Y., Bertaux, J.-L., Leblanc, F., & Quémerais, E. (2008). Observation of the hydrogen corona with SPICAM on Mars Express. Icarus, 195(2), 598–613. https://doi.org/10.1016/j.icarus.2008.01.009
Connerney, J. E. P., Espley, J. R., DiBraccio, G. A., Gruesbeck, J. R., Oliversen, R. J., Mitchell, D. L., et al. (2015). First results of the MAVEN magnetic field investigation. Geophysical Research Letters, 42, 8819–8827. https://doi.org/10.1002/2015GL065366
Deighan, J., Jain S. K., Chaffin, M. S., Fang, X., Halekas, J. S., Clarke, J. T., et al. (2016). Discovery of proton aurora at Mars. American Geophysical Union, fall general assembly 2016, Abstract P13D-01.
Diéval, C., Kallio, E., Barabash, S., Stenberg, G., Nilsson, H., Futaana, Y., et al. (2012). A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations. Journal of Geophysical Research, 117, A06222. https://doi.org/10.1029/2012JA017537
Diéval, C., Stenberg, G., Nilsson, H., & Barabash, S. (2013). A statistical study of proton precipitation onto the Martian upper atmosphere: Mars Express observations. Journal of Geophysical Research: Space Physics, 118, 1972–1983. https://doi.org/10.1002/jgra.50229
Fox, J. L., & Hac, A. B. (2009). Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method. Icarus, 204(2), 527–544. https://doi.org/10.1016/j.icarus.2009.07.005
Frey, H. U., Mende, S. B., Immel, T. J., Fuselier, S. A., Claflin, E. S., Gérard, J. C., & Hubert, B. (2002). Proton aurora in the cusp. Journal of Geophysical Research, 107(A7), 1091. https://doi.org/10.1029/2001JA900161
Futaana, Y., Barabash, S., Grigoriev, A., Holmström, M., Kallio, E., Brandt, P. C., & Dierker, C. (2006). First ENA observations at Mars: ENA emissions from the Martian upper atmosphere. Icarus, 182(2), 424–430. https://doi.org/10.1016/j.icarus.2005.09.019
Galli, A., Wurz, P., Kallio, E., Ekenbäck, A., Holmström, M., Barabash, S., et al. (2008). Tailward flow of energetic neutral atoms observed at Mars. Journal of Geophysical Research, 113, E12012. https://doi.org/10.1029/2008JE003139
Gérard, J.-C., Hubert, B., Bisikalo, D. V., & Shematovich, V. I. (2000). A model of the Lyman-αline profile in the proton aurora. Journal of Geophysical Research, 105(A7), 15,795–15,805. https://doi.org/10.1029/1999JA002002
Gérard, J.-C., Hubert, B., Meurant, M., Shematovich, V. I., Bisikalo, D. V., Frey, H., et al. (2001). Observation of the proton aurora with IMAGE FUV imager and simultaneous ion flux in situ measurements. Journal of Geophysical Research, 106(A12), 28,939–28,948. https://doi.org/10.1029/2001JA900119
Gérard, J.-C., Soret, L., Libert, L., Lundin, R., Stiepen, A., Radioti, A., & Bertaux, J.-L. (2015). Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express. Journal of Geophysical Research: Space Physics, 120, 6749–6765. https://doi.org/10.1002/2015JA021150
Gunell, H., Brinkfeldt, K., Holmström, M., Brandt, P. C., Barabash, S., Kallio, E., et al. (2006). First ENA observations at Mars: Charge exchange ENAs produced in the magnetosheath. Icarus, 182(2), 431–438. https://doi.org/10.1016/j.icarus.2005.10.027
Halekas, J. S., Lillis, R. J., Mitchell, D. L., Cravens, T. E., Mazelle, C., Connerney, J. E. P., et al. (2015). MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophysical Research Letters, 42, 8901–8909. https://doi.org/10.1002/2015GL064693
Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., et al. (2015). The Solar Wind Ion Analyzer for MAVEN. Space Science Reviews, 195(1-4), 125–151. https://doi.org/10.1007/s11214-013-0029-z
Holmström, M., Barabash, S., & Kallio, E. (2002). Energetic neutral atoms at Mars 1: Imaging of solar wind protons. Journal of Geophysical Research, 107(A10), 1277. https://doi.org/10.1029/2001JA000325
Kallio, E., & Barabash, S. (2001). Atmospheric effects of precipitating energetic hydrogen atoms on the Martian atmosphere. Journal of Geophysical Research, 106(A1), 165–177. https://doi.org/10.1029/2000JA002003
Kallio, E., Luhmann, J. G., & Barabash, S. (1997). Charge exchange near Mars: The solar wind absorption and energetic neutral atom production. Journal of Geophysical Research, 102(A10), 22,183–22,197. https://doi.org/10.1029/97JA01662
Leblanc, F., Chaufray, J. Y., Witasse, O., Lilensten, J., & Bertaux, J.-L. (2006). The Martian dayglow as seen by SPICAM UV spectrometer on Mars Express. Journal of Geophysical Research, 111, E09S11. https://doi.org/10.1029/2005JE002664
Mura, A., Orsini, S., Milillo, A., Kallio, E., Galli, A., Barabash, S., et al. (2008). ENA detection on the dayside of Mars: ASPERA-3 NPD statistical study. Planetary and Space Science, 56(6), 840–845. https://doi.org/10.1016/j.pss.2007.12.013
Ritter, B., Gérard, J.-C., Hubert, B., & Rodriguez, L. (2018). Observations of the Proton Aurora on Mars with SPICAM on board Mars Express. Geophysical Research Letters, 45, 612–619. https://doi.org/10.1002/2017GL076235
Schneider, N. M., Deighan, J. I., Jain, S. K., Stiepen, A., Stewart, A. I. F., Larson, D., et al. (2015). Discovery of diffuse aurora on Mars. id. 0313. Science, 350(6261), 0313. https://doi.org/10.1126/science.aad0313
Shematovich, V. I. (2008). Kinetics of suprathermal atoms and molecules in the rarefied planetary atmospheres. In T. Abe (Ed.), Rarefied Gas Dynamics, AIP Conference. Proceedings (Vol.1084, pp. 1047–1054). https://doi.org/10.1063/1.3076436
Shematovich, V. I., Bisikalo, D. V., Diéval, C., Barabash, S., Stenberg, G., Nilsson, H., & Gérard, J.-C. (2011). Proton and hydrogen atom transport in the Martian upper atmosphere with an induced magnetic field. Journal of Geophysical Research, 116, A11320. https://doi.org/10.1029/2011JA017007
Shematovich, V. I., Bisikalo, D. V., & Gérard, J.-C. (1994). A kinetic model of the formation of the hot oxygen geocorona: 1. Quiet geomagnetic conditions. Journal of Geophysical Research, 99(A12), 23,217–23,228. https://doi.org/10.1029/94JA01769
Shematovich, V. I., Bisikalo, D. V., Gérard, J.-C., & Hubert, B. (2017). Changes in the Martian atmosphere induced by auroral electron precipitation. Solar System Research, 51(5), 362–372. https://doi.org/10.1134/S0038094617050094
Soret, L., Gérard, J. C., Libert, L., Shematovich, V. I., Bisikalo, D. V., Stiepen, A., & Bertaux, J. L. (2016). SPICAM observations and modeling of Mars aurorae. Icarus, 264, 398–406. https://doi.org/10.1016/j.icarus.2015.09.023
Stephan, A. W., Chakrabarti, S., & Cotton, D. I. M. (2000). Evidence of ENA precipitation in the EUV dayglow. Geophysical Research Letters, 27(18), 2865–2868. https://doi.org/10.1029/2000GL000040
Wang, X.-D., Barabash, S., Futaana, Y., Grigoriev, A., & Wurz, P. (2013). Directionality and variability of energetic neutral hydrogen fluxes observed by Mars Express. Journal of Geophysical Research: Space Physics, 118, 7635–7642. https://doi.org/10.1002/2013JA018876
Wang, X.-D., Barabash, S., Futaana, Y., Grigoriev, A., & Wurz, P. (2014). Influence of Martian crustal magnetic anomalies on the emission of energetic neutral hydrogen atoms. Journal of Geophysical Research: Space Physics, 119, 8600–8609. https://doi.org/10.1002/2014JA020307