Unpublished conference/Abstract (Scientific congresses and symposiums)
PCI & Auditory ERPs for the diagnosis of disorders of consciousness: a EEG-based methods comparison study
Blandiaux, Séverine; Raimondo, Federico; Wolff, Audrey et al.
20184th Congress of the European Academy of Neurology
 

Files


Full Text
2018-European_Journal_of_Neurology.pdf
Publisher postprint (8.92 MB)
abstracts des ePresentations
Download
Annexes
Lisbon_Sanz_20180617.pptx
Publisher postprint (4.66 MB)
Diapositives de la communication
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
disorders of consciousness; EEG; minimally conscious state; unresponsive wakefulness syndrome; PCI; ERP
Abstract :
[en] INTRODUCTION Diagnosing the level of consciousness in patients suffering from severe brain lesions is still a major challenge. EEG-based systems can help discriminate conscious from unconscious patients. This study aims to confront the results from two of the most reliable methods: the Perturbational Complexity Index (PCI) which is based on Transcranial Magnetic Stimulation (TMS-EEG), and a recent machine learning approach using EEG-extracted markers from a standardized oddball auditory stimulation paradigm (EEG-ERP). METHODS Patients presenting either an unresponsive wakefulness syndrome (UWS), a minimally conscious state (MCS) or an emergence of MCS (EMCS) underwent both TMS-EEG and EEG-ERP. We computed PCI value by compressing the spatiotemporal pattern of cortical responses to the perturbation of the cortex with TMS. For EEG-ERP, we extracted 60 markers corresponding to quantification of power spectrum and complexity in individual EEG sensors and information sharing between them. Using machine-learning, we predicted the individual probability of being (minimally) conscious. RESULTS PCI and EEG markers, when considered categorically (i.e. UWS vs MCS), were consistent for all UWS and EMCS patients, whereas the results for MCS patients showed less consistency. Nevertheless, we found a significant correlation between PCI values and the probability of being conscious with the multivariate classifier. CONCLUSION PCI correlated positively with the combination of EEG markers in severely brain-injured patients. These findings imply that EEG signatures of consciousness can be reliably extracted from different contexts and combined into coherent predictive models, encouraging future efforts in large-scale data-driven clinical neuroscience.
Research Center/Unit :
GIGA-Consciousness
Disciplines :
Neurology
Author, co-author :
Blandiaux, Séverine ;  Université de Liège - ULiège > GIGA : Coma Group
Raimondo, Federico ;  Université de Liège - ULiège > GIGA : Coma Group
Wolff, Audrey ;  Université de Liège - ULiège > GIGA : Coma Group
Sanz, Leandro  ;  Université de Liège - ULiège > GIGA : Coma Group
BODART, Olivier  
Barra, Alice  ;  Université de Liège - ULiège > GIGA : Coma Group
Annen, Jitka  ;  Université de Liège - ULiège > GIGA-CRC In vivo Imaging
Wannez, Sarah ;  Université de Liège - ULiège > GIGA : Coma Group
Sitt, Jacobo Diego;  Institut National de la Santé et de la Recherche Médicale - INSERM > U1127
Laureys, Steven  ;  Université de Liège - ULiège > GIGA : Coma Group
Gosseries, Olivia  ;  Université de Liège - ULiège > GIGA : Coma Group
Language :
English
Title :
PCI & Auditory ERPs for the diagnosis of disorders of consciousness: a EEG-based methods comparison study
Publication date :
15 June 2018
Event name :
4th Congress of the European Academy of Neurology
Event organizer :
European Academy of Neurology
Event place :
Lisbon, Portugal
Event date :
du 16 au 19 juin 2018
Audience :
International
References of the abstract :
S. Blandiaux, F. Raimondo, A. Wolff, LRD. Sanz, O. Bodart, A. Barra, J. Annen, S. Wannez, JD. Sitt, S. Laureys, O. Gosseries, “PCI & Auditory ERPs for the diagnosis of disorders of consciousness: a EEG-based methods comparison study”, Abstracts of the 4th Congress of the European Academy of Neurology, Lisbon, Portugal, ePresentation Sessions. Eur J Neurol, 25:S2, 277-573, doi: 10.1111/ene.13700
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Human Brain Project SP3
Commentary :
DOI du volume d'abstract: 10.1111/ene.13700
Available on ORBi :
since 29 July 2018

Statistics


Number of views
308 (16 by ULiège)
Number of downloads
371 (7 by ULiège)

Bibliography


Similar publications



Contact ORBi