One-year mortality of patients with ST-Elevation myocardial infarction: Prognostic impact of creatinine-based equations to estimate glomerular filtration rate.
Bertrand, Olivier François; Quebec Heart-Lung Institute
Moranne, Olivier
Pottel, Hans ; Université de Liège - ULiège > Département des sciences cliniques > Département des sciences cliniques
DELANAYE, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de néphrologie
Language :
English
Title :
One-year mortality of patients with ST-Elevation myocardial infarction: Prognostic impact of creatinine-based equations to estimate glomerular filtration rate.
Publication date :
2018
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012; 307: 1941–1951. https://doi.org/10.1001/jama.2012.3954 PMID: 22570462
Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger SL, Newman AB, et al. Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med. 2005; 352: 2049–2060. https://doi.org/10.1056/NEJMoa043161 PMID: 15901858
Matsushita K, Ballew SH, Coresh J, Arima H, Ärnlöv J, Cirillo M, et al. Measures of chronic kidney disease and risk of incident peripheral artery disease: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2017; 5: 718–728. https://doi.org/10.1016/S2213-8587(17)30183-3PMID: 28716631
Anavekar NS, McMurray JJV, Velazquez EJ, Solomon SD, Kober L, Rouleau J-L, et al. Relation between Renal Dysfunction and Cardiovascular Outcomes after Myocardial Infarction. N Engl J Med. 2004; 351: 1285–1295. https://doi.org/10.1056/NEJMoa041365 PMID: 15385655
Almeida I, Caetano F, Barra S, Madeira M, Mota P, Leitão-Marques A. Estimating glomerular filtration rate in acute coronary syndromes: Different equations, different mortality risk prediction. Eur Heart J Acute Cardiovasc Care. 2016; 5: 223–230. https://doi.org/10.1177/2048872615576219 PMID: 25740222
Rioboo Lestón L, Abu-Assi E, Raposeiras-Roubin S, Cobas-Paz R, Caneiro-Queija B, Rodríguez-Rodríguez JM, et al. Prognostic usefulness of an age-adapted equation for renal function assessment in older patients with acute coronary syndrome. Eur Heart J Acute Cardiovasc Care. 2017; 204887261773004. https://doi.org/10.1177/2048872617730040 PMID: 28920703
Abu-Assi E, Raposeiras-Roubin S, Riveiro-Cruz A, Rodríguez-Girondo M, González-Cambeiro C, Alvarez-Alvarez B, et al. Creatinine-or cystatin C-based equations to estimate glomerular filtration rate in acute myocardial infarction: A disparity in estimating renal function and in mortality risk prediction. Int J Cardiol. 2013; 168: 4300–4301. https://doi.org/10.1016/j.ijcard.2013.04.194 PMID: 23714598
Osadnik T, Wasilewski J, Lekston A, Strzelczyk J, Kurek A, Gutowski AR, et al. Comparison of modification of diet in renal disease and chronic kidney disease epidemiology collaboration formulas in predicting long-term outcomes in patients undergoing stent implantation due to stable coronary artery disease. Clin Res Cardiol. 2014; 103: 569–576. https://doi.org/10.1007/s00392-014-0687-1 PMID: 24609482
Åkerblom A, Wallentin L, Larsson A, Siegbahn A, Becker RC, Budaj A, et al. Cystatin C- and creatinine-based estimates of renal function and their value for risk prediction in patients with acute coronary syndrome: Results from the PLATelet inhibition and patient outcomes (PLATO) study. Clin Chem. 2013; 59: 1369–1375. https://doi.org/10.1373/clinchem.2012.200709 PMID: 23698074
Coceani M, Carpeggiani C, L’Abbate A. Comparative prognostic value of glomerular filtration rate estimating formulas in ischaemic heart disease. Eur J Cardiovasc Prev Rehabil. 2008; 15: 423–427. https://doi.org/10.1097/HJR.0b013e3282fa40da PMID: 18677166
Sederholm Lawesson S, Alfredsson J, Szummer K, Fredrikson M, Swahn E. Prevalence and prognostic impact of chronic kidney disease in STEMI from a gender perspective: data from the SWEDEHEART register, a large Swedish prospective cohort. BMJ Open. 2015; 5: e008188. https://doi.org/10.1136/ bmjopen-2015-008188 PMID: 26105033
Tomaszuk-Kazberuk A, Kozuch M, Malyszko J, Bachorzewska-Gajewska H, Dobrzycki S, Musial WJ. Which method of GFR estimation has the best prognostic value in patients treated with primary PCI: Cockcroft-Gault formula, MDRD, or CKD-EPI equation?—A 6-year follow-up. Ren Fail. 2011; 33: 983–9. https://doi.org/10.3109/0886022X.2011.618922 PMID: 22013931
Orvin K, Eisen A, Goldenberg I, Farkash A, Shlomo N, Gevrielov-Yusim N, et al. The proxy of renal function that most accurately predicts short- and long-term outcome after acute coronary syndrome. Am Heart J. 2015; 169: 702–712.e3. https://doi.org/10.1016/j.ahj.2015.01.012 PMID: 25965718
Flores-Blanco PJ, López-Cuenca Á, Januzzi JL, Marín F, Sánchez-Martínez M, Quintana-Giner M, et al. Comparison of Risk Prediction With the CKD-EPI and MDRD Equations in Non-ST-Segment Elevation Acute Coronary Syndrome. Clin Cardiol. 2016; 39: 507–15. https://doi.org/10.1002/clc.22556PMID: 27249221
Campbell NG, Varagunam M, Sawhney V, Ahuja KR, Salahuddin N, De Palma R, et al. Mild chronic kidney disease is an independent predictor of long-term mortality after emergency angiography and primary percutaneous intervention in patients with ST-elevation myocardial infarction. Heart. 2012; 98: 42–7. https://doi.org/10.1136/heartjnl-2011-300024 PMID: 21880649
Sabroe JE, Thayssen P, Antonsen L, Hougaard M, Hansen KN, Jensen LO. Impact of renal insufficiency on mortality in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. BMC Cardiovasc Disord. 2014; 14: 15. https://doi.org/10.1186/1471-2261-14-15 PMID: 24506974
Lin T-H, Lai W-T, Kuo C-T, Hwang J-J, Chiang F-T, Chang S-C, et al. Additive effect of in-hospital TIMI bleeding and chronic kidney disease on 1-year cardiovascular events in patients with acute coronary syndrome: Data from Taiwan Acute Coronary Syndrome Full Spectrum Registry. Heart Vessels. 2015; 30: 441–50. https://doi.org/10.1007/s00380-014-0504-9 PMID: 24802367
Gibson CM, Pinto DS, Murphy SA, Morrow DA, Hobbach HP, Wiviott SD, et al. Association of creatinine and creatinine clearance on presentation in acute myocardial infarction with subsequent mortality. J Am Coll Cardiol. 2003; 42: 1535–43. PMID: 14607434
Best PJM, Lennon R, Ting HH, Bell MR, Rihal CS, Holmes DR, et al. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2002; 39: 1113–9. PMID: 11923033
Abu-Assi E, Lear P, Cabanas-Grandío P, Rodríguez-Girondo M, Raposeiras-Roubin S, Pereira-López E, et al. A comparison of the CKD-EPI, MDRD-4, and Cockcroft–Gault equations to assess renal function in predicting all-cause mortality in acute coronary syndrome patients. Int J Cardiol. 2013; 167: 2325–2326. https://doi.org/10.1016/j.ijcard.2012.11.014 PMID: 23218581
Szummer K, Lundman P, Jacobson SH, Lindbäck J, Stenestrand U, Wallentin L, et al. Cockcroft-Gault is better than the Modification of Diet in Renal Disease study formula at predicting outcome after a myocardial infarction: Data from the Swedish Web-system for Enhancement and Development of Evidence-based care in Heart disease Evaluated. Am Heart J. 2010; 159: 979–986. https://doi.org/10.1016/j.ahj.2010.03.028 PMID: 20569709
Bataille Y, Déry J-P, Larose E, Déry U, Costerousse O, Rodés-Cabau J, et al. Prevalence, predictors and clinical impact of unique and multiple chronic total occlusion in non-infarct-related artery in patients presenting with ST-elevation myocardial infarction. Heart. 2012; 98: 1732–7. https://doi.org/10.1136/ heartjnl-2012-302376 PMID: 23014480
Bataille Y, Plourde G, Machaalany J, Abdelaal E, Déry J-P, Larose E, et al. Interaction of chronic total occlusion and chronic kidney disease in patients undergoing primary percutaneous coronary intervention for acute ST-elevation myocardial infarction. Am J Cardiol. 2013; 112: 194–9. https://doi.org/10.1016/j.amjcard.2013.03.010 PMID: 23601580
Delanaye P, Mariat C. The applicability of eGFR equations to different populations. Nat Rev Nephrol. 2013; 9: 513–522. https://doi.org/10.1038/nrneph.2013.143 PMID: 23856996
Björk J, Grubb A, Gudnason V, Indridason OS, Levey AS, Palsson R, et al. Comparison of glomerular filtration rate estimating equations derived from creatinine and cystatin C: validation in the Age, Gene/ Environment Susceptibility-Reykjavik elderly cohort. Nephrol Dial Transplant. 2017; https://doi.org/10.1093/ndt/gfx272 PMID: 29040701
Delanaye P, Ebert N, Melsom T, Gaspari F, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: How to measure glomerular filtration rate with iohexol? Clin Kidney J. 2016; 9: 682–99. https://doi.org/10.1093/ckj/ sfw070 PMID: 27679715
Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976; 16: 31–41. https://doi.org/10.1159/000180580 PMID: 1244564
Froissart M, Rossert J, Jacquot C, Paillard M, Houillier P. Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function. J Am Soc Nephrol. 2005; 16: 763–773. https://doi.org/10.1681/ASN.2004070549 PMID: 15659562
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF III, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150: 604–612. PMID: 19414839
Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner ES, Eriksen BO, et al. A new estimating glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant. 2016; 31: 798–806. https://doi.org/10.1093/ndt/gfv454 PMID: 26932693
Piéroni L, Delanaye P, Boutten A, Bargnoux A-S, Rozet E, Delatour V, et al. A multicentric evaluation of IDMS-traceable creatinine enzymatic assays. Clin Chim Acta. 2011; 412: 2070–2075. https://doi.org/10.1016/j.cca.2011.07.012 PMID: 21803031
Pottel H, Dubourg L, Schaeffner E, Eriksen BO, Melsom T, Lamb EJ, et al. The diagnostic value of rescaled renal biomarkers serum creatinine and serum cystatin C and their relation with measured glomerular filtration rate. Clin Chim Acta. 2017; 471: 164–170. https://doi.org/10.1016/j.cca.2017.06.005PMID: 28601669
Pottel H, Vrydags N, Mahieu B, Vandewynckele E, Croes K, Martens F. Establishing age/sex related serum creatinine reference intervals from hospital laboratory data based on different statistical methods. Clin Chim Acta. 2008; 396: 49–55. https://doi.org/10.1016/j.cca.2008.06.017 PMID: 18621041
Gehan EA, George SL. Estimation of human body surface area from height and weight. Cancer Che-mother Rep. 1970; 54: 225–235. PMID: 5527019
KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013; 3: 1–150.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977; 33: 159–174. PMID: 843571
Christensen E. Multivariate survival analysis using Cox’s regression model. Hepatology. 7: 1346–58. PMID: 3679094
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982; 143: 29–36. https://doi.org/10.1148/radiology.143.1.7063747 PMID: 7063747
Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observations. J Am Stat Assoc. 1958; 53: 457–481.
Mühlenbruch K, Kuxhaus O, Pencina MJ, Boeing H, Liero H, Schulze MB. A confidence ellipse for the Net Reclassification Improvement. Eur J Epidemiol. 2015; 30: 299–304. https://doi.org/10.1007/ s10654-015-0001-1 PMID: 25724473
Pencina MJ, D’Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011; 30: 11–21. https://doi.org/10.1002/sim.4085 PMID: 21204120
Berger JS, Elliott L, Gallup D, Roe M, Granger CB, Armstrong PW, et al. Sex Differences in Mortality Following Acute Coronary Syndromes. JAMA. 2009; 302: 874. https://doi.org/10.1001/jama.2009.1227PMID: 19706861
Delanaye P, Schaeffner E, Ebert N, Cavalier E, Mariat C, Krzesinski J-MM, et al. Normal reference values for glomerular filtration rate: what do we really know? Nephrol Dial Transplant. 2012; 27: 2664–2672. https://doi.org/10.1093/ndt/gfs265 PMID: 22802582
Pottel H, Delanaye P, Weekers L, Selistre L, Goffin K, Gheysens O, et al. Age-dependent reference intervals for estimated and measured glomerular filtration rate. Clin Kidney J. 2017; 10: 545–551. https://doi.org/10.1093/ckj/sfx026 PMID: 28852494
Glassock R, Delanaye P, El Nahas M. An Age-Calibrated Classification of Chronic Kidney Disease. JAMA. 2015; 314: 559–560. https://doi.org/10.1001/jama.2015.6731 PMID: 26023760
Delanaye P, Glassock RJ, Pottel H, Rule AD. An Age-Calibrated Definition of Chronic Kidney Disease: Rationale and Benefits. Clin Biochem Rev. 2016; 37: 17–26. PMID: 27057075
Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999; 130: 461–70. PMID: 10075613
Szummer K, Evans M, Carrero JJ, Alehagen U, Dahlström U, Benson L, et al. Comparison of the Chronic Kidney Disease Epidemiology Collaboration, the Modification of Diet in Renal Disease study and the Cockcroft-Gault equation in patients with heart failure. Open Heart. 2017; 4: e000568. https://doi.org/10.1136/openhrt-2016-000568 PMID: 28761677
Ferreira JP, Girerd N, Pellicori P, Duarte K, Girerd S, Pfeffer MA, et al. Renal function estimation and Cockcroft–Gault formulas for predicting cardiovascular mortality in population-based, cardiovascular risk, heart failure and post-myocardial infarction cohorts: The Heart “OMics” in AGEing (HOMAGE) and the high-risk myocardia. BMC Medicine. 2016; 14: 181. https://doi.org/10.1186/s12916-016-0731-2PMID: 27829460
Weidmann ZM, Breidthardt T, Twerenbold R, Zusli C, Nowak A, von Eckardstein A, et al. Prediction of mortality using quantification of renal function in acute heart failure. Int J Cardiol; 2015; 201: 650–657. https://doi.org/10.1016/j.ijcard.2015.08.097 PMID: 26355241
Mandelli S, Riva E, Tettamanti M, Detoma P, Giacomin A, Lucca U. Mortality Prediction in the Oldest Old with Five Different Equations to Estimate Glomerular Filtration Rate: The Health and Anemia Population-based Study. Plos One. 2015; 10: e0136039. https://doi.org/10.1371/journal.pone.0136039PMID: 26317988
Barra S, Providência R, Faustino C, Paiva L, Fernandes A, Leitão Marques A. Performance of the Cockcroft-Gault, MDRD and CKD-EPI Formulae in Non-Valvular Atrial Fibrillation: Which one Should be Used for Risk Stratification? J Atri Fibrillation.2013; 6: 896.
Kontos MC, Jamal SM, Ornato JP, Tatum JL, Jesse RL, Anderson FP. Comparison of the modification of diet in renal disease and the Cockcroft-Gault equations for predicting mortality in patients admitted for exclusion of myocardial ischemia. Am J Cardiol. 2008; 102: 140–5. https://doi.org/10.1016/j.amjcard.2008.03.023 PMID: 18602510
Zamora E, Lupón J, Vila J, Urrutia A, de Antonio M, Sanz H, et al. Estimated glomerular filtration rate and prognosis in heart failure: value of the Modification of Diet in Renal Disease Study-4, chronic kidney disease epidemiology collaboration, and cockroft-gault formulas. J Am Coll Cardiol. 2012; 59: 1709–15. https://doi.org/10.1016/j.jacc.2011.11.066 PMID: 22554602
Smilde TDJ, van Veldhuisen DJ, Navis G, Voors A a., Hillege HL. Drawbacks and prognostic value of formulas estimating renal function in patients with chronic heart failure and systolic dysfunction. Circulation. 2006; 114: 1572–1580. https://doi.org/10.1161/CIRCULATIONAHA.105.610642 PMID: 17015793
Plischke M, Neuhold S, Kohl M, Heinze G, Sunder-Plassmann G, Pacher R, et al. Renal function in heart failure: a disparity between estimating function and predicting mortality risk. EurJ Heart Fail. 2013; 15: 763–770.
Levey AS, Coresh J, Greene T, Stevens L a., Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006; 145: 247–254. PMID: 16908915
Björk J, Bäck SE, Ebert N, Evans M, Grubb A, Hansson M, et al. GFR estimation based on standardized creatinine and cystatin C: a European multicenter analysis in older adults. Clin Chem Lab Med. 2018; 23: 422–435
Delanaye P, Cavalier E, Pottel H. Serum Creatinine: Not So Simple! Nephron. 2017; 136: 302–308. https://doi.org/10.1159/000469669 PMID: 28441651
Delanaye P, Melsom T, Ebert N, Bäck S-E, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 2: Why to measure glomerular filtration rate with iohexol? Clin Kidney J. 2016; 9: 700–4. https://doi.org/10.1093/ckj/sfw071PMID: 27679716
Schei J, Stefansson VTN, Mathisen UD, Eriksen BO, Solbu MD, Jenssen TG, et al. Residual Associations of Inflammatory Markers with eGFR after Accounting for Measured GFR in a Community-Based Cohort without CKD. Clin J Am Soc Nephrol. 2016; 11: 280–286. https://doi.org/10.2215/CJN. 07360715 PMID: 26668020