Self-assembly of carbon nanotube-based composites by means of evaporation-assisted depositions: importance of drop-by-drop self-assembly on material properties
Machrafi, Hatim ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Minetti, Christophe
Miskovic, Vanja
Dauby, Pierre ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Dubois, Frank
Iorio, Carlo
Language :
English
Title :
Self-assembly of carbon nanotube-based composites by means of evaporation-assisted depositions: importance of drop-by-drop self-assembly on material properties
Ke, L.J., Gao, G.Z., Shen, Y., Zhou, J.W., Rao, P.F., Encapsulation of aconitine in self-assembled licorice protein nanoparticles reduces the toxicity in vivo. Nanoscale Research Letters, 10, 2015, 449.
Bufon, C.C.B., González, J.D.C., Thurmer, D.J., Grimm, D., Bauer, M., Schmidt, O.G., Self-assembled ultra-compact energy storage elements based on hybrid nanomembranes. Nano Lett. 10 (2010), 2506–2510.
Hsieh, G.W., Beecher, P., Li, F.M., Servati, P., Colli, A., Fasoli, A., Chu, D., Nathan, A., Ong, B., Robertson, J., Ferrari, A.C., Milne, W.I., Formation of composite organic thin film transistors with nanotubes and nanowires. Physica E 40 (2008), 2406–2413.
Ding, J., Li, X., Wang, X., Zhang, J., Yu, D., Qiu, B., Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon 68 (2014), 670–677.
Rangharajan, K.K., Kwak, K.J., Conlisk, A.T., Wu, Y., Prakash, S., Effect of surface modification on interfacial nanobubble morphology and contact line tension. Soft Matter 11 (2015), 5214–5223.
Prevo, B.G., Kuncicky, D.M., Velev, O.D., Engineered deposition of coatings from nano- and microparticles: a brief review of convective assembly at high volume fraction. Colloid. Surface. Physicochem. Eng. Aspect. 311 (2007), 2–10.
Zhang, R., Elkhooly, T.A., Huang, Q., Liu, X., Yang, X., Yan, H., Xiong, Z., Ma, J., Feng, Q., Shen, Z., A dual-layer macro/mesoporous structured TiO2 surface improves the initial adhesion of osteoblast-like cells. Mater. Sci. Eng. C 78 (2017), 443–451.
Wang, D., Liu, S., Trummer, B.J., Deng, C., Wang, A., Carbohydrate microarrays for the recognition of cross reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20 (2002), 275–281.
Smalyukh II, Zribi, O.V., Butler, J.C., Lavrentovich, O.D., Wong, G.C.L., Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA. Phys. Rev. Lett., 96, 2006, 177801.
Zhang, D., Jiang, C., Sun, Y., Zhou, Q., Layer-by-layer self-assembly of tricobalt tetroxide-polymer nanocomposite toward high-performance humidity-sensing. J. Alloy. Comp. 711 (2017), 652–658.
Zhang, D., Liu, J., Chang, H., Liu, A., Xia, B., Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv. 5 (2015), 18666–18672.
Ray, D., Sain, S., In situ processing of cellulose nanocomposites. Composites: Appl. Sci. Manuf. 83 (2016), 19–37.
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (1997), 827–829.
Bhardwaj, R., Fang, X., Attinger, D., Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study. N. J. Phys., 2009, 11 075020.
Sommer, A.P., Franke, R., Biomimicry patterns with nanosphere suspensions. Nano Lett., 3, 2003, 573.
Truskett, V.N., Stebe, K.J., Influence of surfactants on an evaporating drop: fluorescence images and particle deposition patterns. Langmuir 19 (2003), 8271–8279.
Machrafi, H., Minetti, C., Dauby, P.C., Iorio, C.S., Self-assembly by multi-drop evaporation of carbon-nanotube droplets on a polycarbonate substrate. Physica E 85 (2017), 206–213.
Wen, W., Wu, J.M., Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv. 4 (2014), 58090–58100.
Aruna, S.T., Mukasyan, A.S., Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12 (2008), 44–50.
Tieke, B., Coordinative supramolecular assembly of electrochromic thin films. Curr. Opin. Solid State Mater. Sci. 16 (2011), 499–507.
Decher, G., Hong, J.D., Build up of ultrathin multilayer films by a self-assembly process: i. consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. Macromol. Symp. 46 (1991), 321–327.
Borges, J., Mano, J.F., Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 114 (2014), 8883–8942.
Hong, J., Park, H., Fabrication and characterization of block copolymer micelle multilayer films prepared using dip-, spin- and spray-assisted layer-by-layer assembly deposition. Colloid. Surface. Physicochem. Eng. Aspect. 381 (2011), 7–12.
Kharlampieva, E., Sukhishvili, S.A., Hydrogen-bonded layer-by-layer polymer films. J. Macromol. Sci. Part C Polymer Rev. 46 (2006), 377–395.
Park, J., Moon, J., Control of colloidal particle deposit patterns within picoliter droplets ejected by inkjet printing. Langmuir 22 (2006), 3506–3513.
Sommer, A.P., Cehreli, M., Akca, K., Sirin, T., Piskin, E., Superadhesion: attachment of nanobacteria to tissues - model simulation. Cryst. Growth Des. 5 (2005), 21–23.
Andreeva, L.V., Koshkin, A.V., Lebedev-Stepanov, P.V., Petrov, A.N., Alfimov, M.V., Driving forces of the solute self-organization in an evaporating liquid droplet. Colloid. Surface. Physicochem. Eng. Aspect. 300 (2007), 300–306.
Onoda, G., Somasundaran, P., Two- and one-dimensional flocculation of silica spheres on substrates. J. Colloid Interface Sci. 118 (1987), 169–175.
Min, Y., Moon, G.D., Kim, C.-E., Lee, J.-H., Yang, H., Soon, A., Jeong, U., Solution-based synthesis of anisotropic metal chalcogenide nanocrystals and their applications. J. Mat. Chem. C 2 (2014), 6222–6248.
Gençer, A., Schütz, C., Thielemans, W., Influence of the particle concentration and marangoni flow on the formation of cellulose nanocrystal films. Langmuir 33 (2016), 228–234.
Smits, F.M., Measurement of sheet resistivities with the four-point probe. Bell Syst. Tech. J. 34 (1958), 711–718.
Valdes, L.B., Resistivity measurements on Germanium on transistors. Proc. I.R.E 42 (1954), 420–427.
Glushchuk, A., Minetti, C., Machrafi, H., Iorio, C.S., Experimental investigation of force balance at vapour condensation on a cylindrical fin. Int. J. Heat Mass Tran. 108 (2017), 2130–2142.
Peng, H., Jain, M., Peterson, D.E., Zhu, Y., Jia, Q., Composite carbon nanotube/silica fibers with improved mechanical strengths and electrical conductivities. Small 4 (2008), 1964–1967.
Roussel, F., Brun, J.F., Allart, A., Huang, L., O'Brien, S., Horizontally-aligned carbon nanotubes arrays and their interactions with liquid crystal molecules: physical characteristics and display applications. AIP Adv., 2012, 2 012110.
Cao, M., Xiong, D.B., Tan, Z., Ji, G., Amin-Ahmadi, B., Guo, Q., Fan, G., Guo, C., Li, Z., Zhang, D., Aligning graphene in bulk copper: nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity. Carbon 117 (2017), 65–74.
Hossain, M.M., Islam, M.A., Shima, H., Hasan, M., Lee, M., Alignment of carbon nanotubes in carbon nanotube fibers through nanoparticles: a route for controlling mechanical and electrical properties. ACS Appl. Mater. Interfaces 9 (2017), 5530–5542.
Lekawa-Raus, A., Patmore, J., Kurzepa, L., Bulmer, J., Koziol, K., Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 24 (2014), 3661–3682.
Delan, A., Rennau, M., Schulz, S.E., Gessner, T., Thermal conductivity of ultra low-k dielectrics. Microelectron. Eng. 70 (2003), 280–284.
Sinha, S., Barjami, S., Iannacchione, G., Schwab, A., Muench, G., Off-axis thermal properties of carbon nanotube films. J. Nanoparticle Res. 7 (2005), 651–657.
Chu, K., Yun, D.J., Kim, D., Park, H., Park, S.H., Study of electric heating effects on carbon nanotube polymer composites. Org. Electron. 15 (2014), 2734–2741.
Koziol, K.K., Janas, D., Brown, E., Hao, L., Thermal properties of continuously spun carbon nanotube fibres. Physica E 88 (2017), 104–108.
Marconnet, A.M., Panzer, M.A., Goodson, K.E., Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev. Mod. Phys. 85 (2013), 1296–1327.