Abstract :
[en] We consider random matrix models for the thermodynamic competition between chiral symmetry breaking and diquark condensation in QCD at finite temperature and finite baryon density. The models produce mean field phase diagrams whose topology depends solely on the global symmetries of the theory. We discuss the block structure of the interactions that is imposed by chiral, spin, and color degrees of freedom and comment on the treatment of density and temperature effects. Extension of the coupling parameters to a larger class of theories allows us to investigate the robustness of the phase topology with respect to variations in the dynamics of the interactions. We briefly study the phase structure as a function of coupling parameters and the number of colors.
Scopus citations®
without self-citations
2