[en] In mitochondrial oxidative phosphorylation, electron transfer from NADH or succinate to oxygen by a series of large protein complexes in the inner mitochondrial membrane (complexes I-IV) is coupled to the generation of an electrochemical proton gradient, the energy of which is utilized by complex V to generate ATP. In Euglena gracilis, a non-parasitic secondary green alga related to trypanosomes, these respiratory complexes totalize more than 40 Euglenozoa-specific subunits along with about 50 classical subunits described in other eukaryotes. In the present study the Euglena proton-pumping complexes I, III, and IV were purified from isolated mitochondria by a two-steps liquid chromatography approach. Their atypical subunit composition was further resolved and confirmed using a three-steps PAGE analysis coupled to mass spectrometry identification of peptides. The purified complexes were also observed by electron microscopy followed by single-particle analysis. Even if the overall structures of the three oxidases are similar to the structure of canonical enzymes (e.g. from mammals), additional atypical domains were observed in complexes I and IV: an extra domain located at the tip of the peripheral arm of complex I and a "helmet-like" domain on the top of the cytochrome c binding region in complex IV.
Miranda Astudillo, Héctor Vicente ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Yadav, Sathish; University of Groningen > Groningen Biological Sciences and Biotechnology Institute > Department ofElectron Microscopy
Colina-Tenorio, Lilia; Universidad Nacional Autónoma de México > Instituto de Fisiología Celular > Departamento de Genética Molecular
Bouillenne, Fabrice ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Degand, Hervé; Université Catholique de Louvain, Louvain-la-Neuve > Institut des Sciences de la Vie
Morsomme, Pierre; Université Catholique de Louvain, Louvain-la-Neuve > Institut des Sciences de la Vie
Boekema, Egbert; University of Groningen > Groningen Biological Sciences and Biotechnology Institute > Department ofElectron Microscopy
Cardol, Pierre ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Language :
English
Title :
The atypical subunit composition of respiratory complexes I and IV is associated with original extra structural domains in Euglena gracilis.
Publication date :
2018
Journal title :
Scientific Reports
eISSN :
2045-2322
Publisher :
Nature Publishing Group, London, United Kingdom
Volume :
8
Issue :
1
Pages :
9698
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 682580 - BEAL - Bioenergetics in microalgae : regulation modes of mitochondrial respiration, photosynthesis, and fermentative pathways, and their interactions in secondary algae
Carroll, J., Bovine complex i is a complex of 45 different subunits (2006) J. Biol. Chem., 281, pp. 32724-32727
Cardol, P., Mitochondrial NADH:Ubiquinone oxidoreductase (complex I) in eukaryotes: A highly conserved subunit composition highlighted by mining of protein databases (2011) Biochim. Biophys. Acta-Bioenerg., 1807, pp. 1390-1397
Friedrich, T., Redox components and structure of the respiratory NADH:Ubiquinone oxidoreductase (complex i) (1998) Biochim. Biophys. Acta-Bioenerg., 1365, pp. 215-219
Di Luca, A., Gamiz-Hernandez, A.P., Kaila, V.R.I., Symmetry-related proton transfer pathways in respiratory complex i (2017) Proc. Natl. Acad. Sci., p. 201706278. , https://doi.org/10.1073/pnas.1706278114
Baradaran, R., Berrisford, J.M., Minhas, G.S., &Sazanov, la Crystal structure of the entire respiratory complex i (2013) Nature, 494, pp. 443-448
Efremov, R.G., Baradaran, R., Sazanov, L.A., The architecture of respiratory complex i (2010) Nature, 465, pp. 441-447
Berry, E.A., Guergova-Kuras, M., Huan, L., Crofts, A.R., Structure and Function of Cytochrome bc Complexes (2000) Annu. Rev. Biochem., 69, pp. 1005-1075
Zara, V., Conte, L., Trumpower, B.L., Biogenesis of the yeast cytochrome bc1 complex (2009) Biochim. Biophys. Acta-Mol. Cell Res., 1793, pp. 89-96
Xia, D., Structural analysis of cytochrome bc1 complexes: Implications to the mechanism of function (2013) Biochim. Biophys. Acta-Bioenerg., 1827, pp. 1278-1294
Timón-Gómez, A., Mitochondrial cytochrome c oxidase biogenesis: Recent developments (2017) Semin. Cell Dev. Biol., pp. 1-16. , https://doi.org/10.1016/j.semcdb.2017.08.055
Vidoni, S., MR-1S interacts with pet100 and pet117 in module-based assembly of human cytochrome c oxidase (2017) Cell Rep., 18, pp. 1727-1738
Denis, M., Structure and function of cytochrome-c oxidase (1986) Biochimie, 68, pp. 459-470
Shimada, S., Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode (2017) EMBO J., 36, pp. 291-300
Luo, F., Structure of bovine cytochrome c oxidase in the ligand-free reduced state at neutral pH (2018) Acta Crystallogr. Sect. F Struct. Biol. Commun., 74, pp. 92-98
Zakrys, B., Rafal, M., Karnkowska, A., (2017) Euglena: Biochemistry, Cell and Molecular Biology, pp. 3-28. , (eds Schwartzbach, S. &Shingeoka, S
Burki, F., The eukaryotic tree of life from a global phylogenomic perspective (2014) Cold Spring Harb. Perspect. Biol., 6, pp. 1-18
Gibbs, S.P., The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae (1981) Ann. New York Acad. Sci., 81, pp. 193-208
Turmel, M., Gagnon, M.C., O'Kelly, C.J., Otis, C., Lemieux, C., The chloroplast genomes of the green algae pyramimonas, monomastix, and pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids (2009) Mol. Biol. Evol., 26, pp. 631-648
Fujita, T., Aoyagi, H., Ogbonna, J.C., Tanaka, H., Effect of mixed organic substrate on a-tocopherol production by Euglena gracilis in photoheterotrophic culture (2008) Appl. Microbiol. Biotechnol., 79, pp. 371-378
Tani, Y., Tsumura, H., Screening for Tocopherol-producing Microorganisms and a-Tocopherol Production by Euglena gracilis Z (1989) Agric. Biol. Chem., 53, pp. 305-312
Moreno-Sánchez, R., Oxidative phosphorylation supported by an alternative respiratory pathway in mitochondria from Euglena (2000) Biochim. Biophys. Acta-Bioenerg., 1457, pp. 200-210
Sharpless, T.K., Butow, R.A., An inducible alternate terminal oxidase in Euglena gracilis mitochondria (1970) J. Biol. Chem., 245, pp. 58-70
Benichou, P., Calvayrac, R., Claisse, M., Induction by antimycin A of cyanide-resistant respiration in heterotrophic Euglena gracilis: Effects on growth, respiration and protein biosynthesis (1988) Planta, 175, pp. 23-32
Morales, J., Novel mitochondrial complex II isolated from trypanosoma cruzi is composed of 12 peptides including a heterodimeric IP subunit (2009) J. Biol. Chem., 284, pp. 7255-7263
Speijer, D., Characterization of the respiratory chain from cultured Crithidia fasciculata (1997) Mol. Biochem. Parasitol., 85, pp. 171-186
Verner, Z., Malleable Mitochondrion of Trypanosoma brucei (2015) Int. Rev. Cell Mol. Biol., 315, pp. 73-151
Perez, E., The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae (2014) Mitochondrion, 19, pp. 338-349
Yadav, K.N.S., Atypical composition and structure of the mitochondrial dimeric ATP synthase from Euglena gracilis (2017) Biochim. Biophys. Acta-Bioenerg., 1858, pp. 267-275
Mühleip, A.W., Dewar C, E., Schnaufer, A., Kühlbrandt, W., Davies, K.M., In-situ structure of trypanosomal ATP synthase dimer reveals unique arrangement of catalytic subunits (2017) PNAS, , https://doi.org/10.1073/pnas.1612386114
Castro-Guerrero, N.A., Krab, K., Moreno-Sánchez, R., The alternative respiratory pathway of Euglena mitochondria (2004) J. Bioenerg. Biomembr., 36, pp. 459-469
Neumann, D., Parthier, B., Effects of nalidixic acid, chloramphenicol, cycloheximide and anisomycin on structure and development of plastids and mitochondria in greening euglena gracilis (1973) Exp. Cell Res., 81, pp. 255-268
Calvayrac, R., Van Lente, F., Buetow, R.A., Euglena gracilis: Formation of Giant Mitochondria (1971) Science (80)., 173, pp. 252-254
Panigrahi, A.K., Mitochondrial complexes in Trypanosoma brucei: A novel complex and a unique oxidoreductase complex (2008) Mol. Cell. Proteomics, 7, pp. 534-545
Panigrahi, A.K., A comprehensive analysis of trypanosoma brucei mitochondrial proteome (2009) Proteomics, 9, pp. 434-450
Acestor, N., Trypanosoma brucei Mitochondrial Respiratome: Composition and Organization in Procyclic Form (2011) Mol. Cell. Proteomics, 10
Zíková, A., Schnaufer, A., Dalley, R.A., Panigrahi, A.K., Stuart, K.D., The f0f1-atp synthase complex contains novel subunits and is essential for procyclic trypanosoma brucei (2009) PLoS Pathog., 5
Zíková, A., Structural and functional association of Trypanosoma brucei MIX protein with cytochrome c oxidase complex (2008) Eukaryot. Cell, 7, pp. 1994-2003
Boxer, D.H., The location of the major polypeptide of the ox hearth mitochondrial inner membrane (1975) FEBS Lett., 59, pp. 149-152
Detke, S., Elsabrouty, R., Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania (2008) Acta Trop., 105, pp. 16-20
Gnipová, A., The ADP/ATP carrier and its relationship to oxidative phosphorylation in ancestral protist trypanosoma brucei (2015) Eukaryot. Cell, 14, pp. 297-310
Hashimi, H., The assembly of F1FO-ATP synthase is disrupted upon interference of RNA editing in Trypanosoma brucei (2010) Int. J. Parasitol., 40, pp. 45-54
Nelson, R.E., Aphasizheva, I., Falick, A.M., Nebohacova, M., Simpson, L., The I-complex in Leishmania tarentolae is an uniquelystructured F1-ATPase (2004) Mol. Biochem. Parasitol., 135, pp. 219-222
Montgomery, M.G., Leslie, A.G.W., Zíková, A., Walker, J.E., (2017) ATP Synthase from Trypanosoma Brucei Has An Elaborated Canonical F 1-domain and Conventional Catalytic Sites, , https://doi.org/10.1073/pnas.1720940115
Duarte, M., Tomás, A.M., The mitochondrial complex i of trypanosomatids-An overview of current knowledge (2014) J. Bioenerg. Biomembr., 46, pp. 299-311
Gabaldón, T., Huynen, M.A., Lineage-specific gene loss following mitochondrial endosymbiosis and its potential for function prediction in eukaryotes (2005) Bioinformatics, 21, pp. 144-150
Wittig, I., Schägger, H., Advantages and limitations of clear-native PAGE (2005) Proteomics, 5, pp. 4338-4346
Wittig, I., Schägger, H., Features and applications of blue-native and clear-native electrophoresis (2008) Proteomics, 8, pp. 3974-3990
Guerrero-Castillo, S., Vázquez-Acevedo, M., González-Halphen, D., Uribe-Carvajal, S., In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway (2009) Biochim. Biophys. Acta-Bioenerg., 1787, pp. 75-85
Nubel, E., Wittig, I., Kerscher, S., Brandt, U., Schägger, H., Two-dimensional native electrophoretic analysis of respiratory supercomplexes from Yarrowia lipolytica (2009) Proteomics, 9, pp. 2408-2418
Cardol, P., Higher plant-like subunit composition of mitochondrial complex i from Chlamydomonas reinhardtii: 31 Conserved components among eukaryotes (2004) Biochim. Biophys. Acta-Bioenerg., 1658, pp. 212-224
Klodmann, J., Sunderhaus, S., Nimtz, M., Jansch, L., Braun, H.P., Internal Architecture of Mitochondrial Complex i from Arabidopsis thaliana (2010) Plant Cell, 22, pp. 797-810
Zhu, J., Vinothkumar, K.R., Hirst, J., Structure of mammalian respiratory complex i (2016) Nature, 536, pp. 354-358
Zickermann, V., Mechanistic insight from the crystal structure of mitochondrial complex i (2015) Science (80)., 347, pp. 44-49
Dudkina, N.V., Eubel, H., Keegstra, W., Boekema, E.J., Braun, H.-P., Structure of a mitochondrial supercomplex formed by respiratory-chain complexes i and III (2005) Proc. Natl. Acad. Sci., 102, pp. 3225-3229
Sunderhaus, S., Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex i in plants (2006) J. Biol. Chem., 281, pp. 6482-6488
Gawryluk, R.M.R., Gray, M.W., Evidence for an early evolutionary emergence of gamma-type carbonic anhydrases as components of mitochondrial respiratory complex i (2010) BMC Evol. Biol., 10, p. 176
Cardol, P., Forti, G., Finazzi, G., Regulation of electron transport in microalgae (2011) Biochim. Biophys. Acta-Bioenerg., 1807, pp. 912-918
Airenne, T.T., Structure-function analysis of enoyl thioester reductase involved in mitochondrial maintenance (2003) J. Mol. Biol., 327, pp. 47-59
Carroll, J., Fearnley, I.M., Shannon, R.J., Hirst, J., Walker, J.E., Analysis of the subunit composition of complex i from bovine heart mitochondria (2003) Mol. Cell. Proteomics, 2, pp. 117-126
Smith, P.M., Fox, J.L., Winge, D.R., Biogenesis of the cytochrome bc 1 complex and role of assembly factors (2012) Biochim. Biophys. Acta-Bioenerg., 1817, pp. 276-286
Hao, G.-F., Rational design of highly potent and slow-binding cytochrome bc1 inhibitor as fungicide by computational substitution optimization (2015) Sci. Rep., 5, p. 13471
Zara, V., Palmisano, I., Conte, L., Trumpower, B.L., Further insights into the assembly of the yeast cytochrome bc1 complex based on analysis of single and double deletion mutants lacking supernumerary subunits and cytochrome b (2004) Eur. J. Biochem., 271, pp. 1209-1218
Cocco, T., Structural and functional-characteristics of polypeptide subunits of the bovine heart ubiquinol-cytochrome-c reductase complex (1991) Eur. J. Biochem., 195, pp. 731-734
Esser, L., Inhibitor-complexed structures of the cytochrome bc1 from the photosynthetic bacterium Rhodobacter sphaeroides (2008) J. Biol. Chem., 283, pp. 2846-2857
Cui, J.-Y., Mukai, K., Saeki, K., Matsubara, H., Molecular cloning and nucleotide sequences of cdnas encoding subunits i, II, and IX of euglena gracilis mitochondrial complex III (1994) J. Biochem., 115, pp. 98-107
Brönstrup, U., Hachtel, W., Cytochrome c oxidase of euglena gracilis: Purification, characterization, and identification of mitochondrially synthesized subunits (1989) J. Bioenerg. Biomembr., 21, pp. 359-373
Collins, N., Brown, R.H., Merrett, M.J., Oxidative phosphorylation during glycollate metabolism in mitochondria from phototrophic Euglena gracilis (1975) Biochem J, 150, pp. 373-377
Pettigrew, G.W., Leaver, J.L., Meyer, T.E., Ryle, A.P., Purification, properties and amino acid sequence of atypical cytochrome c from two protozoa, Euglena gracilis and Crithidia oncopelti (1975) Biochem. J., 147, pp. 291-302
Ghosh, A., Mitochondrial disease genes coa6, cox6b and sco2 have overlapping roles in cox2 biogenesis (2016) Hum. Mol. Genet., 25, pp. 660-671
Goldberg, A., Adaptive evolution of cytochrome c oxidase subunit VIII in anthropoid primates (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 5873-5878
Colina-Tenorio, L., Subunit Asa1 spans all the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp (2016) Biochim. Biophys. Acta-Bioenerg., 1857, pp. 359-369
Oostergetel, G.T., Keegstra, W., Brisson, A., Automation of specimen selection and data acquisition for protein electron crystallography (1998) Ultramicroscopy, 74, pp. 47-59
Scheres, S.H.W., Núñez-Ramírez, R., Sorzano, C.O.S., Carazo, J.M., Marabini, R., Image processing for electron microscopy single-particle analysis using XMIPP (2008) Nat. Protoc., 3, pp. 977-990
Scheres, S.H.W., Relion: Implementation of a Bayesian approach to cryo-em structure determination (2012) J. Struct. Biol., 180, pp. 519-530