Dynamics and evolution of Turgay‐type vegetation in Western Siberia throughout the early Oligocene to earliest Miocene—a study based on diversity of plant functional types in the carpological record
[en] Based on ecospectra of 66 published carpofloras we study dynamics and evolution of Turgay vegetation in Western Siberia during the early Oligocene to earliest Miocene. The ecospectra are obtained using a Plant Functional Type (PFT) classification system comprising 26 herbaceous to arboreal PFTs. The carpofloras originate from seven floristic levels covering the time‐span from the Rupelian to early Aquitanian. Key elements of these levels are documented based on original collection materials. Although impacted by local edaphic conditions, the ecospectra can be interpreted in terms of changing vegetation. Our data show that warm temperate mesophytic, mixed conifer‐broad‐leaved deciduous forest assemblages persisted throughout the Oligocene and earliest Miocene in this core area of Turgai type vegetation. This is in line with comparatively stable climate conditions persisting in the studied time‐span, showing a minor temperature decline and coeval moderate increase in seasonality and precipitation. Concurrently, the reconstructed ecospectra contradict significant continental drying throughout the Oligocene and earliest Miocene. Spatial variability of the proportions of PFTs within the single floristic horizons primarily reflects local edaphic conditions. High diversities of PFTs characteristic for swamp vegetation are mainly confined to the early Oligocene and have a regional focus. Our results indicate that taxonomical diversity, particularly concerning mesic herbs and deciduous shrubs and trees, increased towards the end of the Oligocene. This increase in biodiversity probably can be attributed to an increase in rainfall and extension of terrestrial habitats after the final retreat of the Paratethys.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Popova, Svetlana
Utescher, Torsten
Gromyko, Dimitry
Mosbrugger, Volker
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Language :
English
Title :
Dynamics and evolution of Turgay‐type vegetation in Western Siberia throughout the early Oligocene to earliest Miocene—a study based on diversity of plant functional types in the carpological record
Akhmetiev MA. 2010. Paleocene and Eocene floristic and climatic change in Russia and Northern Kazakhstan. Bulletin of Geosciences 85: 77–94.
Akhmetiev MA, Benyamovskiy VN. 2009. Paleogene floral assemblages around epicontinental seas and straits in northern central Eurasia: Proxies for climatic and paleogeographic evolution. Geologica Acta 7: 297–309.
Akhmetiev MA, Zaporozhets NI. 2014. Paleogene Events in Central Eurasia, their role in development of flora and vegetation, the boundary shift phytochoria and climate change. Stratigraphy and Geological Correlation 22: 312–335. (In Russian)
Arbuzova ON. 1997. New data on the Oligocene flora from Lagerny Sad (Western Siberia). Botanicheskiy Zhurnal 82: 3–15.
Babushkin AE, Volkova VS, Gnibidenko ZN eds. 2001. Unified regional stratigraphic charts of neogene and paleogene deposits of the West Siberian plain and explanatory note. Novosibirsk: SNIIGGiMS. (in Russian)
Bosboom R, Mandric O, Dupont-Nivet G, Proust JN, Ormukov C, Aminov J. 2015. Late Eocene palaoegeography of the proto-Paratethys Sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan). In: Brunet MF, McCan T, Sobel ER eds. Geological evolution of central Asian basins and the Western Tien Shan range. London: Geological Society of London. 427: 565–588.
Budantsev LY. 2017. Palaeogene floras of northeastern Asia. In: Budantsev AL ed. Selected works. Moscow: KMK Scientific Press Ltd. 295–306.
Caves JK, Winnick MJ, Graham SA, Sjostrom DJ, Mulch A, Chamberlain CP. 2015. Role of the westerlies in Central Asia climate over the Cenozoic. Earth and Planetary Science Letters 428: 33–43.
Dorofeev PI. 1963. Tertiary floras of Western Siberia. Leningrad, Moscow: Academy of Sciences of USSR.
Dorofeev PI. 1967. Palaeocarpological data by stratigraphy of tertiary deposits of Western Siberia. In: Martinson GG ed. Stratigraphiya I paleontologiya mezozoyskich i paleogen-neogenovych kontinentalnych otlozheniy aziatskoy chasti USSR. Leningrad: Nauka. 270–276. (in Russian)
François L, Utescher T, Favre E, Henrot AJ, Warnant P, Micheels A, Erdei B, Suc JP, Cheddadi R, Mosbrugger V. 2011. Modelling late Miocene vegetation in Europe: Results of the CARAIB model and comparison with palaeovegetation data. Palaeogeography, Palaeoclimatology, Palaeoecology 304: 359–378.
Henrot A-J, Utescher T, Erdei B, Dury M, Hamon N, Ramstein G, Krapp M, Herold N, Goldner A, Favre E, Munhoven G, François L. 2017. Middle Miocene climate and vegetation models and their validation with proxy data. Palaeogeography, Palaeoclimatology, Palaeoecology 467: 95–119.
Kornilova VS, Lavrov VV. 1949. About tertiary xeric flora findings in Turgay and its stratigraphycal position. Vestnik Akademii Nauk Kazakhstan ASSR 50: 104–107.
Krasilov VA. 1976. Tsagayan flora of the Amur Region. Moscow: Nauka. (in Russian)
Kryshtofovich AN. 1932. Geologicheskiy obzor stran Dal'nego Vostoka. Leningrad, Moskva: Geograzvedizdat.
Kryshtofovich AN. 1936. Razvitiye botaniko-geograficheskikh provintsiy s kontsa melovogo perioda. Sovetskaya Botanika 3: 9–24.
Kryshtofovich AN. 1946. K istorii tretichnogo perioda Dal'nego Vostoka. Materialy Vsesoyuznogo Nauchno-issledovatel'skogo Geologicheskogo Instituta Obschestvennaya Seriya. Moscow: Academy of sciences of USSR. 7: 65–76.
Kuzmina OB, Volkova VS. 2001. Stratigraphy and palynology of the Oligocene Miocene deposits of evidence derived from the borehole 01-BP drilled in the Irtysh area of the Omsk region, West Siberia. Russian Geology and Geophysics 42: 134–141.
Mosbrugger V, Utescher T. 1997. The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 134: 61–86.
Mutke J, Barthlott W. 2005. Patterns of vascular plant diversity at continental to global scales. Biologiske Skrifter 55: 521–531.
Nikitin VP. 1978. Flora and vegetation of Western Siberia in late Palaeogene and Neogene. In: Shatskiy SB ed. Palaeogene and Neogene of Siberia (palaeontology and stratigraphy). Novosibirsk: Nauka. 68–72. (in Russian)
Nikitin VP. 1989. Oligocene floras of Western Siberia (based on palaeocarpological data). In: Akentieva LM ed. Cenozoic of Siberia and North-east of USSR. Novosibirsk: Nauka. 26–30. (in Russian)
Nikitin VP. 2005. Paleocarpology and problems of the palaeogene stratigraphy of West Siberia in Russian. Russian Geology and Geophysics 46: 1134–1140.
Nikitin VP. 2006. Palaeocarpology and Stratigraphy of the Palaeogene and the Neogene Strata in Asian Russia. Novosibirsk: Izdatelstvo Akademii Geo.
Nikitin VP. 2007. Palaeogene and Neogene strata in northeastern Asia: Paleocarpological background. Russian Geology and Geophysics 48: 675–682.
Panova LA. 1971. Oligocene of western Siberian Plato. In: Saks VN, Volkova VS eds. Cenozoic floras of Siberia described on pollen records. Moscow: Nauka. 40–50. (in Russian)
Popova S, Utescher T, Gromyko DV, Bruch AA, Henrot A-J, Mosbrugger V. 2017. Cenozoic vegetation gradients in the mid- and higher latitudes of Central Eurasia and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 467: 69–82.
Popova S, Utescher T, Gromyko DV, Bruch AA, Mosbrugger V. 2012. Palaeoclimate evolution in Siberia and the Russian far East from the Oligocene to Pliocene: Evidence from fruit and seed floras. Turkish Journal of Earth Sciences 21: 315–334.
Popova S, Utescher T, Gromyko DV, Mosbrugger V, Herzog E, Francois L. 2013. Vegetation change in Siberia and the northeast of Russia during the Cenozoic cooling: A study based on diversity of plant functional types. Palaios 28: 418–432.
Roth-Nebelsick A, Utescher T, Mosbrugger V, Diester-Haass L, Walther H. 2004. Changes in atmospheric CO2 concentrations and climate from the late Eocene to early Miocene: Palaeobotanical reconstruction based on fossil floras from Saxony, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 205: 43–67.
Roth-Nebelsick A, Oehm C, Grein M, Utescher T, Kunzmann L, Friedrich J-P, Konrad W. 2014. Stomatal density and index data of Platanus neptuni leaf fossils and their evaluation as a CO 2 proxy for the Oligocene. Review of Palaeobotany and Palynology 206: 1–9.
Strömberg CAE. 2011. Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences 39: 517–544.
Teodoridis V, Bruch AA, Vassio E, Martinetto E, Kvaček Z, Stuchlik L. 2017. Plio-Pleistocene floras of the Vildštejn formation in the Cheb Basin, Czech Republic: A floristic and palaeoenvironmental review. Palaeogeography, Palaeoclimatology, Palaeoecology 467: 166–190.
Trouet V, Esper J, Graham NE, Baker A, James S, Scourse D, Frank DC. 2009. Persistent Positive north atlantic oscillation mode dominated the medieval climate anomaly. Science 324: 78–80.
Utescher T, Bondarenko OV, Mosbrugger V. 2015. The cenozoic cooling: Continental signals from the Atlantic and Pacific side of Eurasia. Earth and Planetary Science Letters 415: 121–133.
Utescher T, Bruch AA, Erdei B, François L, Ivanov D, Jacques FMB, Kern AK, Liu Y-S, Mosbrugger V, Spicer RA. 2014. The Coexistence approach: Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeography, Palaeoclimatology, Palaeoecology 410: 58–73.
Utescher T, Bruch AA, Micheels A, Mosbrugger V, Popova S. 2011. Cenozoic climate gradients in Eurasia a palaeo-perspective on future climate change? Palaeogeography, Palaeoclimatology, Palaeoecology 304: 351–358.
Utescher T, Mosbrugger V. 2007. Eocene vegetation patterns reconstructed from plant diversity: A global perspective. Palaeogeography, Palaeoclimatology, Palaeoecology 247: 243–271.
Vassio E, Martinetto E. 2012. Biases in the frequency of fruits and seeds in modern fluvial sediments in northwestern Italy: The key to interpreting analogous fossil assemblages. Palaios 27: 779–797.
Volkova VS. 2011. Paleogene and Neogene stratigraphy and palaeotemperatura trend of Western Siberia (from palynological data). Russian Geology and Geophysics 52: 709–716.
Volkova VS, Kuzmina OB. 2004. Vegetation and climate in the Oligocene and Neogene of West Siberia. Extraid du Bulletin t/CXXVIII de J Academie Serbe des sciences et des arts, Classe des sciences mathematiqus et naturelles 42: 305–317.
Zachos J, Dickens G, Zeebe R. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279–283.
Zachos J, Pagani U, Stone L, Thomas E, Billups K. 2001. Trends, rhythms and aberrations in global climates 65 Ma to present. Science 292: 686–693.
Zhilin SG. 1984. The main stages of the temperate forest flora formation in the Oligocene - early Miocene of Kazakhstan. XXXIII Komarov readings. Special Issue. Leningrad: Nauka. 11.
Zhilin SG. 1997. To the history of ideas about the Turgai flora. In: Proceedings of the Toporkov Readings. Rudniy: Rudnuy Industrial Institute. 5: 209–215.
Zhilin SG. 2001. Structure of the Turgayan flora in the Oligocene and Miocene and its palaeoclimatic features. Acta Palaeobotanica 41: 141–146.