[en] How fungi respond to long-term fertilization in Chinese Mollisols as sensitive indicators of soil fertility has received limited attention. To broaden our knowledge, we used high-throughput pyrosequencing and quantitative PCR to explore the response of soil fungal community to long-term chemical and organic fertilization strategies. Soils were collected in a 35-year field experiment with four treatments: no fertilizer, chemical phosphorus, and potassium fertilizer (PK), chemical phosphorus, potassium, and nitrogen fertilizer (NPK), and chemical phosphorus and potassium fertilizer plus manure (MPK). All fertilization differently changed soil properties and fungal ommunity. The MPK application benefited soil acidification alleviation and organic matter accumulation, as well as soybean yield. Moreover, the community richness indices (Chao1 and (ACE) were higher under the MPK regimes, indicating the resilience of microbial diversity and stability. With regards to fungal community composition, the phylum Ascomycota was dominant in all samples, followed by Zygomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. At each taxonomic level, the community composition dramatically differed under different fertilization strategies, leading to different soil quality. The NPK application caused a loss of Leotiomycetes but an increase in Eurotiomycetes, which might reduce the plant–fungal symbioses and increase nitrogen losses and greenhouse gas emissions. According to the linear discriminant analysis (LDA) coupled with effect size (LDA score > 3.0), the NPK application significantly increased the abundances of fungal taxa with known pathogenic traits, such as order Chaetothyriales, family Chaetothyriaceae and Pleosporaceae, and genera Corynespora, Bipolaris, and Cyphellophora. In contrast, these fungi were detected at low levels under the MPK regime. Soil organic matter and pH were the two most important contributors to fungal community composition.
Research Center/Unit :
Microbial Processes and Interactions Research Unit
Abarenkov, K., Henrik Nilsson, R., Larsson, K. H., Alexander, I. J., Eberhardt, U., Erland, S., … Sen, R. (2010). The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytologist, 186(2), 281–285. https://doi.org/10.1111/j.1469-8137.2009.03160.x
Arzanlou, M., Khodaei, S., & Saadati Bezdi, M. (2012). Occurrence of Chaetomidium arxii on sunn pest in Iran. Mycosphere, 3, 234–239. https://doi.org/10.5943/mycosphere/
Basotra, N., Kaur, B., Di Falco, M., Tsang, A., & Chadha, B. S. (2016). Mycothermus thermophilus (Syn. Scytalidium thermophilum): Repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed. Bioresource Technology, 222, 413–421. https://doi.org/10.1016/j.biortech.2016.10.018
Behie, S. W., & Bidochka, M. J. (2014). Nutrient transfer in plant-fungal symbioses. Trends in Plant Science, 19, 734–740. https://doi.org/10.1016/j.tplants.2014.06.007
Blaalid, R., Kumar, S., Nilsson, R. H., Abarenkov, K., Kirk, P. M., & Kauserud, H. (2013). ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources, 13, 218–224. https://doi.org/10.1111/1755-0998.12065
Bokulich, N. A., & Mills, D. A. (2013). Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Applied and Environment Microbiology, 79, 2519–2526. https://doi.org/10.1128/AEM.03870-12
Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., … Caporaso, J. G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10, 57–59
Braak, C. J. F., & Smilauer, P. (2012). Canoco reference manual and user's guide: software for ordination, version 5.0. Ithaca USA Microcomput. Power
Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environment Microbiology, 74, 738–744. https://doi.org/10.1128/AEM.02188-07
Buee, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S., & Martin, F. (2009). 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 184, 449–456. https://doi.org/10.1111/j.1469-8137.2009.03003.x
Cairney, J. W. G. (2011). Ectomycorrhizal fungi: The symbiotic route to the root for phosphorus in forest soils. Plant and Soil, 344, 51–71. https://doi.org/10.1007/s11104-011-0731-0
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Huttley, G. A. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303
Chaer, G., Fernandes, M., Myrold, D., & Bottomley, P. (2009). Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils. Microbial Ecology, 58, 414–424. https://doi.org/10.1007/s00248-009-9508-x
Chu, H., Lin, X., Fujii, T., Morimoto, S., Yagi, K., Hu, J., & Zhang, J. (2007). Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry, 39, 2971–2976. https://doi.org/10.1016/j.soilbio.2007.05.031
Clark, C. M., Cleland, E. E., Collins, S. L., Fargione, J. E., Gough, L., Gross, K. L., … Grace, J. B. (2007). Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 10, 596–607. https://doi.org/10.1111/j.1461-0248.2007.01053.x
Coyne, M. S. (1999). Soil microbiology: An exploratory approach. NY, USA: Delmar New York
Dean, S. L., Farrer, E. C., Taylor, D. L., Porras-Alfaro, A., Suding, K. N., & Sinsabaugh, R. L. (2014). Nitrogen deposition alters plant–fungal relationships: Linking belowground dynamics to aboveground vegetation change. Molecular Ecology, 23, 1364–1378. https://doi.org/10.1111/mec.12541
Decock, C., Delgado-Rodríguez, G., Buchet, S., & Seng, J. M. (2003). A new species and three new combinations in Cyphellophora, with a note on the taxonomic affinities of the genus, and its relation to Kumbhamaya and Pseudomicrodochium. Antonie van Leeuwenhoek, 84(3), 209–216. https://doi.org/10.1023/A:1026015031851
Degnan, P. H., & Ochman, H. (2012). Illumina-based analysis of microbial community diversity. ISME Journal, 6, 183–194. https://doi.org/10.1038/ismej.2011.74
Ding, J., Jiang, X., Guan, D., Zhao, B., Ma, M., Zhou, B., … Li, J. (2017). Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Applied Soil Ecology, 111, 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003
Dixon, L. J., Schlub, R. L., Pernezny, K., & Datnoff, L. E. (2009). Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology, 99, 1015–1027. https://doi.org/10.1094/PHYTO-99-9-1015
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200. https://doi.org/10.1093/bioinformatics/btr381
Edwards, I. P., Zak, D. R., Kellner, H., Eisenlord, S. D., & Pregitzer, K. S. (2011). Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a Northern Hardwood forest. PLoS ONE, 6, 1–10. https://doi.org/10.1371/journal.pone.0020421
Eilers, K. G., Debenport, S., Anderson, S., & Fierer, N. (2012). Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology & Biochemistry, 50, 58–65. https://doi.org/10.1016/j.soilbio.2012.03.011
Esperschütz, J., Gattinger, A., Mäder, P., Schloter, M., & Fließbach, A. (2007). Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiology Ecology, 61, 26–37. https://doi.org/10.1111/j.1574-6941.2007.00318.x
Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., … Caporaso, J. G. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 109, 21390–21395. https://doi.org/10.1073/pnas.1215210110
Freedman, Z. B., Romanowicz, K. J., Upchurch, R. A., & Zak, D. R. (2015). Differential responses of total and active soil microbial communities to long-term experimental N deposition. Soil Biology & Biochemistry, 90, 275–282. https://doi.org/10.1016/j.soilbio.2015.08.014
García-Gil, J. C., Ceppi, S. B., Velasco, M. I., Polo, A., & Senesi, N. (2004). Long-term effects of amendment with municipal solid waste compost on the elemental and acidic functional group composition and pH-buffer capacity of soil humic acids. Geoderma, 121, 135–142. https://doi.org/10.1016/j.geoderma.2003.11.004
Garg, V. K., & Kaushik, P. (2005). Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia foetida. Bioresource Technology, 96, 1063–1071. https://doi.org/10.1016/j.biortech.2004.09.003
Geisseler, D., & Scow, K. M. (2014). Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biology & Biochemistry, 75, 54–63. https://doi.org/10.1016/j.soilbio.2014.03.023
Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., … Zhang, F. S. (2010). Significant acidification in major Chinese croplands. Science, 327(5968), 1008–1010. https://doi.org/10.1126/science.1182570
Habib, F., Javid, S., Saleem, I., Ehsan, S., & Ahmad, Z. A. (2014). Potassium dynamics in soil under long term regimes of organic and inorganic fertilizer application. Soil Environment, 33(2), 110–115
Hart, S. C., Stark, J. M., Davidson, E. A., & Firestone, M. K. (1994). Nitrogen mineralization, immobilization, and nitrification. Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties, 42, 985–1018
He, J. Z., Zheng, Y., Chen, C. R., He, Y. Q., & Zhang, L. M. (2008). Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soils and Sediments, 8, 349–358. https://doi.org/10.1007/s11368-008-0025-1
Hedley, M. J., & Stewart, J. W. B. (1982). Method to measure microbial phosphate in soils. Soil Biology & Biochemistry, 14, 377–385. https://doi.org/10.1016/0038-0717(82)90009-8
Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of Soil Analysis Part 3—Chemical Methods, 19, 551–574
Huang, B., Sun, W., Zhao, Y., Zhu, J., Yang, R., Zou, Z., … Su, J. (2007). Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma, 139, 336–345. https://doi.org/10.1016/j.geoderma.2007.02.012
Jasrotia, P., Green, S.J., Canion, A., Overholt, W.A., Prakash, O., Wafula, D., … Kostka, J. E. (2014). Watershed-scale fungal community characterization along a pH gradient in a subsurface environment cocontaminated with uranium and nitrate. Applied and Environment Microbiology, 80(6), 1810–1820. https://doi.org/10.1128/AEM.03423-13
Joergensen, R. G., & Wichern, F. (2008). Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology & Biochemistry, 40, 2977–2991. https://doi.org/doi:10.1016/j.soilbio.2008.08.017
Johnson, N. C., Wolf, J., & Koch, G. W. (2003). Interactions among mycorrhizae, atmospheric CO2 and soil N impact plant community composition. Ecology Letters, 6, 532–540. https://doi.org/10.1046/j.1461-0248.2003.00460.x
Kim, Y. C., Gao, C., Zheng, Y., He, X. H., Yang, W., Chen, L., … Guo, L. D. (2015). Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Mycorrhiza, 25, 267–276. https://doi.org/10.1007/s00572-014-0608-1
Klaubauf, S., Inselsbacher, E., Zechmeister-Boltenstern, S., Wanek, W., Gottsberger, R., Strauss, J., & Gorfer, M. (2010). Molecular diversity of fungal communities in agricultural soils from Lower Austria. Fungal Diversity, 44, 65–75. https://doi.org/10.1007/s13225-010-0053-1
Koljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., & Bahram, M. (2014). Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22, 5271–5277. https://doi.org/10.1111/mec.12481
Kuramae, E. E., Yergeau, E., Wong, L. C., Pijl, A. S., Van Veen, J. A., & Kowalchuk, G. A. (2012). Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiology Ecology, 79, 12–24. https://doi.org/10.1111/j.1574-6941.2011.01192.x
Lauber, C. L., Ramirez, K. S., Aanderud, Z., Lennon, J., & Fierer, N. (2013). Temporal variability in soil microbial communities across land-use types. ISME Journal, 7, 1641–1650. https://doi.org/10.1038/ismej.2013.50
Li, X. G., Ding, C. F., Zhang, T. L., & Wang, X. X. (2014). Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biology and Biochemistry, 72, 11–18 https://doi.org/10.1016/j.soilbio.2014.01.019
Liu, J., Sui, Y., Yu, Z., Shi, Y., Chu, H., Jin, J., … Wang, G. (2015). Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biology & Biochemistry, 83, 29–39. https://doi.org/doi:10.1016/j.soilbio.2015.01.009
Lyons, J. I., Newell, S. Y., Buchan, A., & Moran, M. A. (2003). Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh. Microbial Ecology, 45, 270–281. https://doi.org/10.1007/s00248-002-1055-7
Maček, I., Dumbrell, A. J., Nelson, M., Fitter, A. H., Vodnik, D., & Helgason, T. (2011). Local adaptation to soil hypoxia determines the structure of an arbuscular mycorrhizal fungal community in roots from natural CO2 springs. Applied and Environment Microbiology, 77, 4770–4777. https://doi.org/10.1128/AEM.00139-11
Marsh, A. J., O Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2013). Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS ONE, 8, e69371. https://doi.org/10.1371/journal.pone.0069371
Mothapo, N., Chen, H., Cubeta, M. A., Grossman, J. M., & Fuller, F. (2015). Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy. Soil Biology and Biochemistry, 83, 160–175 https://doi.org/10.1016/j.soilbio.2015.02.001
Näsholm, T., Kielland, K., & Ganeteg, U. (2009). Tansley review. New Phytologist, 182(1), 31–48. https://doi.org/10.1111/j.1469-8137.2006.01864.x
Nemergut, D. R., Townsend, A. R., Sattin, S. R., Freeman, K. R., Fierer, N., Neff, J. C., … Schmidt, S. K. (2008). The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: Implications for carbon and nitrogen cycling. Environmental Microbiology, 10, 3093–3105. https://doi.org/10.1111/j.1462-2920.2008.01735.x
Nevarez, L., Vasseur, V., Le Madec, A., Le Bras, M. A., Coroller, L., Leguérinel, I., & Barbier, G. (2009). Physiological traits of Penicillium glabrum strain LCP 08.5568, a filamentous fungus isolated from bottled aromatised mineral water. International Journal of Food Microbiology, 130, 166–171. https://doi.org/10.1016/j.ijfoodmicro.2009.01.013
Paungfoo-Lonhienne, C., Yeoh, Y. K., Kasinadhuni, N. R. P., Lonhienne, T. G. A., Robinson, N., Hugenholtz, P., … Schmidt, S. (2015). Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 5, 8678. https://doi.org/10.1038/srep08678
Peacock, A. G., Mullen, M. D., Ringelberg, D. B., Tyler, D. D., Hedrick, D. B., Gale, P. M., & White, D. C. (2001). Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biology and Biochemistry, 33(7), 1011–1019. https://doi.org/10.1016/S0038-0717(01)00004-9
Ramirez, K. S., Craine, J. M., & Fierer, N. (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, 18, 1918–1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x
Road, A. (2002). Pathogen profile Bipolaris sorokiniana, a cereal pathogen of global concern : Cytological and molecular approaches towards better control. Molecular Plant Pathology, 3, 185–195
Romaniuk, R., Giuffré, L., Costantini, A., & Nannipieri, P. (2011). Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems. Ecological Indicators, 11, 1345–1353. https://doi.org/10.1016/j.ecolind.2011.02.008
Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., … Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4, 1340–1351. https://doi.org/10.1038/ismej.2010.58
Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environment Microbiology, 75, 1589–1596. https://doi.org/10.1128/AEM.02775-08
Rousk, J., Brookes, P. C., & Bååth, E. (2010). The microbial PLFA composition as affected by pH in an arable soil. Soil Biology & Biochemistry, 42, 516–520. https://doi.org/10.1016/j.soilbio.2009.11.026
Rousk, J., & Frey, S. D. (2015). Revisiting the hypothesis that fungal-to-bacterial dominance characterizes turnover of soil organic matter and nutrients. Ecological Monographs, 85, 457–472. https://doi.org/10.1890/14-1796.1
Sajeewa, S., Maharachchikumbura, N., Hyde, K. D., Jones, G., Eric, H., Mckenzie, C., … Hongsanan, S. (2015). Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity, 72, 199
Sapp, M., Harrison, M., Hany, U., Charlton, A., & Thwaites, R. (2015). Comparing the effect of digestate and chemical fertiliser on soil bacteria. Applied Soil Ecology, 86, 1–9. https://doi.org/10.1016/j.apsoil.2014.10.004
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., … Miller, A. N. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109, 6241–6246. https://doi.org/10.1073/pnas.1117018109
Schröder, J. J., Uenk, D., & Hilhorst, G. J. (2007). Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant and Soil, 299, 83–99. https://doi.org/10.1007/s11104-007-9365-7
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60
Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., … Chu, H. (2013). Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57, 204–211. https://doi.org/10.1016/j.soilbio.2012.07.013
Singh, H., Verma, A., Ansari, M. W., & Shukla, A. (2014). Physiological response of rice (Oryza sativa L.) genotypes to elevated nitrogen applied under field conditions. Plant Signaling & Behavior, 9, e29015. https://doi.org/10.4161/psb.29015
Stajich, J. E. (2015). Phylogenomics enabling genome-based mycology, the mycota: A comprehensive treatise on fungi as experimental systems for basic and applied research: VII systematics and evolution Part B(2nd ed.). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-46011-5_11
Strickland, M. S., & Rousk, J. (2010). Considering fungal: Bacterial dominance in soils – methods, controls, and ecosystem implications. Soil Biology & Biochemistry, 42, 1385–1395. https://doi.org/doi:10.1016/j.soilbio.2010.05.007
Strickland, T. C., & Sollins, P. (1987). Improved method for separating light-and heavy-fraction organic material from soil. Soil Science Society of America Journal, 51, 1390–1393. https://doi.org/10.2136/sssaj1987.03615995005100050056x
Sun, Q., Liu, Y., Yuan, H., & Lian, B. (2016). The effect of environmental contamination on the community structure and fructification of ectomycorrhizal fungi. Microbiologyopen, 1–8, https://doi.org/10.1002/mbo3.396
Szuba, A. (2015). Ectomycorrhiza of Populus. Forest Ecology and Management, 347, 156–169. https://doi.org/10.1016/j.foreco.2015.03.012
Wang, J. T., Zheng, Y. M., Hu, H. W., Zhang, L. M., Li, J., & He, J. Z. (2015). Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem. Journal of Soils and Sediments, 15, 1224–1232. https://doi.org/10.1007/s11368-015-1070-1
Wei, D., Yang, Q., Zhang, J.-Z., Wang, S., Chen, X.-L., Zhang, X.-L., & Li, W.-Q. (2008). Bacterial community structure and diversity in a black soil as affected by long-term fertilization*1 *1Project supported by the Heilongjiang Provincial Natural Science Funds for Distinguished Young Scholars, China (No. JC200622), the Heilongjiang Provinci. Pedosphere, 18, 582–592. https://doi.org/doi:10.1016/S1002-0160(08)60052-1
Whalen, J. K., Chang, C., Clayton, G. W., & Carefoot, J. P. (2000). Cattle manure amendments can increase the pH of acid soils. Soil Science Society of America Journal, 64, 962–966. https://doi.org/10.2136/sssaj2000.643962x
Williams, A., Börjesson, G., & Hedlund, K. (2013). The effects of 55 years of different inorganic fertiliser regimes on soil properties and microbial community composition. Soil Biology & Biochemistry, 67, 41–46. https://doi.org/10.1016/j.soilbio.2013.08.008
Winka, K., Eriksson, O. E., & Bång, Å. (1998). Molecular evidence for recognizing the Chaetothyriales. Mycologia, 1, 822–830. https://doi.org/10.2307/3761324
Wurzbacher, C., Rösel, S., Rychła, A., & Grossart, H.-P. (2014). Importance of saprotrophic freshwater fungi for pollen degradation. PLoS ONE, 9, e94643. https://doi.org/10.1371/journal.pone.0094643
Xie, H., Li, J., Zhu, P., Peng, C., Wang, J., He, H., & Zhang, X. (2014). Long-term manure amendments enhance neutral sugar accumulation in bulk soil and particulate organic matter in a Mollisol. Soil Biology & Biochemistry, 78, 45–53. https://doi.org/10.1016/j.soilbio.2014.07.009
Xiong, J., Liu, Y., Lin, X., Zhang, H., Zeng, J., Hou, J., … Chu, H. (2012). Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14, 2457–2466. https://doi.org/10.1111/j.1462-2920.2012.02799.x
Xiong, W., Zhao, Q., Zhao, J., Xun, W., Li, R., Zhang, R., … Shen, Q. (2014). Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microbial Ecology, 70, 209–218. https://doi.org/10.1007/s00248-014-0516-0
Yin, C., Fan, F., Song, A., Cui, P., Li, T., & Liang, Y. (2015). Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil. Applied Microbiology and Biotechnology, 99, 5719–5729. https://doi.org/10.1007/s00253-015-6461-0
Zámocky, M., Tafer, H., Chovanová, K., Lopandic, K., Kamlárová, A., & Obinger, C. (2016). Genome sequence of the filamentous soil fungus Chaetomium cochliodes reveals abundance of genes for heme enzymes from all peroxidase and catalase superfamilies. BMC Genomics, 17, 763. https://doi.org/10.1186/s12864-016-3111-6
Zhao, J., Ni, T., Li, Y., Xiong, W., Ran, W., Shen, B., … Zhang, R. (2014). Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE, 9, https://doi.org/10.1371/journal.pone.0085301
Zhao, Y., Xu, X., Hai, N., Huang, B., Zheng, H., & Deng, W. (2015). Uncertainty assessment for mapping changes in soil organic matter using sparse legacy soil data and dense new-measured data in a typical black soil region of China. Environmental Earth Sciences, 73, 197–207. https://doi.org/10.1007/s12665-014-3411-6
Zhou, J., Guan, D., Zhou, B., Zhao, B., Ma, M., Qin, J., … Li, J. (2015). Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biology & Biochemistry, 90, 42–51. https://doi.org/10.1016/j.soilbio.2015.07.005
Zhou, J., Jiang, X., Wei, D., Zhao, B., Ma, M., Chen, S., … Li, J. (2017). Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China. Scientific Reports, 7, 3267
Zhou, J., Jiang, X., Zhou, B., Zhao, B., Ma, M., Guan, D., … Qin, J. (2016). Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biology & Biochemistry, 95, 135–143. https://doi.org/10.1016/j.soilbio.2015.12.012