Cuadrado, R.; Department of Physics, University of York, York, United Kingdom, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain, Universitat Autonoma de Barcelona, Bellaterra (Cerdanyola del Valles), Spain
Oroszlány, L.; Department of Physics of Complex Systems, Eötvös University, Pázmány Péter, sétány 1/A, Budapest, Hungary
Deák, A.; Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest, Hungary
Ostler, Thomas ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Meo, A.; Department of Physics, University of York, York, United Kingdom
Chepulskii, R. V.; Samsung Electronics, Semiconductor R and D Center (Grandis), San Jose, CA, United States
Apalkov, D.; Samsung Electronics, Semiconductor R and D Center (Grandis), San Jose, CA, United States
Evans, R. F. L.; Department of Physics, University of York, York, United Kingdom
Szunyogh, L.; Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest, Hungary, MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Budafoki út 8, Budapest, Hungary
Chantrell, R. W.; Department of Physics, University of York, York, United Kingdom
Language :
English
Title :
Site-Resolved Contributions to the Magnetic-Anisotropy Energy and Complex Spin Structure of Fe/MgO Sandwiches
K. Mizunuma, S. Ikeda, J. H. Park, H. Yamamoto, H. Gan, K. Miura, H. Hasegawa, J. Hayakawa, F. Matsukura, and H. Ohno, MgO barrier-perpendicular magnetic tunnel junctions with CoFe/Pd multilayers and ferromagnetic insertion layers, Appl. Phys. Lett. 95, 232516 (2009). APPLAB 0003-6951 10.1063/1.3265740
J.-H. Park, C. Park, T. Jeong, M. T. Moneck, N. T. Nufer, and J.-G. Zhu, CoPt multilayer based magnetic tunnel junctions using perpendicular magnetic anisotropy, J. Appl. Phys. 103, 07A917 (2008). JAPIAU 0021-8979 10.1063/1.2838754
G. Kim, Y. Sakuraba, M. Oogane, Y. Ando, and T. Miyazaki, Tunneling magnetoresistance of magnetic tunnel junctions using perpendicular magnetization (Equation presented) electrodes, Appl. Phys. Lett. 92, 172502 (2008). APPLAB 0003-6951 10.1063/1.2913163
L. Gao, X. Jiang, S.-H. Yang, J. D. Burton, E. Y. Tsymbal, and Stuart S. P. Parkin, Bias Voltage Dependence of Tunneling Anisotropic Magnetoresistance in Magnetic Tunnel Junctions with MgO and (Equation presented) Tunnel Barriers, Phys. Rev. Lett. 99, 226602 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.99.226602
J. Stöhr and H. C. Siegmann, Magnetism (Springer, Berlin, 2006).
I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004). RMPHAT 0034-6861 10.1103/RevModPhys.76.323
D. Weller, Y. Wu, J. Stohr, M. G. Samant, B. D. Hermsmeier, and C. Chappert, Orbital magnetic moments of Co in multilayers with perpendicular magnetic anisotropy, Phys. Rev. B 49, 12888 (1994). PRBMDO 0163-1829 10.1103/PhysRevB.49.12888
C. J. Aas, P. J. Hasnip, R. Cuadrado, E. M. Plotnikova, L. Szunyogh, L. Udvardi, and R. W. Chantrell, Exchange coupling and magnetic anisotropy at Fe/FePt interfaces, Phys. Rev. B 88, 174409 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.88.174409
R. Cuadrado and R. W. Chantrell, Interface magnetic moments enhancement of FePt-L10/MgO(001): An ab initio study, Phys. Rev. B 89, 094407 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.89.094407
K. Nakamura, T. Akiyama, T. Ito, M. Weinert, and A. J. Freeman, Role of an interfacial FeO layer in the electric-field-driven switching of magnetocrystalline anisotropy at the Fe/MgO interface, Phys. Rev. B 81, 220409(R) (2010). PRBMDO 1098-0121 10.1103/PhysRevB.81.220409
B. Rodmacq, S. Auffret, B. Dieny, S. Monso, and P. Boyer, Crossovers from in-plane to perpendicular anisotropy in magnetic tunnel junctions as a function of the barrier degree of oxidation, J. Appl. Phys. 93, 7513 (2003). JAPIAU 0021-8979 10.1063/1.1555292
M. K. Niranjan, C.-G. Duan, S. S. Jaswal, and E. Y. Tsymbal, Electric field effect on magnetization at the Fe/MgO(001) interface, Appl. Phys. Lett. 96, 222504 (2010). APPLAB 0003-6951 10.1063/1.3443658
Kohji Nakamura, Yushi Ikeura, Toru Akiyama, and Tonomori Ito, Giant perpendicular magnetocrystalline anisotropy of 3d transition-metal thin films on MgO, J. Appl. Phys. 117, 17C731 (2015). JAPIAU 0021-8979 10.1063/1.4916191
B. Yu. Yavorsky and I. Mertig, Noncollinear interface magnetism and ballistic transport in FeFeOMgOFe tunnel junctions: Ab initio calculations using the KKR method, Phys. Rev. B 74, 174402 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.74.174402
B. Dupé, G. Bihlmayer, M. Böttcher, S. Blügel, and S. Heinze, Engineering Skyrmions in transition-metal multilayers for spintronics, Nat. Commun. 7, 11779 (2016). NCAOBW 2041-1723 10.1038/ncomms11779
S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction, Nat. Mater. 9, 721 (2010). NMAACR 1476-1122 10.1038/nmat2804
A. Hallal, H. X. Yang, B. Dieny, and M. Chshiev, Anatomy of perpendicular magnetic anisotropy in Fe/MgO magnetic tunnel junctions: First-principles insight, Phys. Rev. B 88, 184423 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.88.184423
N. Kazantseva, D. Hinzke, U. Nowak, R. W. Chantrell, U. Atxitia, and O. Chubykalo-Fesenko, Towards multiscale modeling of magnetic materials: Simulations of FePt, Phys. Rev. B 77, 184428 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.77.184428
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The siesta method for ab initio order-(Equation presented) materials simulation, J. Phys. Condens. Matter 14, 2745 (2002). JCOMEL 0953-8984 10.1088/0953-8984/14/11/302
J. Zabloudi, R. Hammerling, L. Szunyogh, and P. Weinberger, Electron Scattering in Solid Matter (Springer, Berlin, 2005).
See the Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevApplied.9.054048 for details of the calculation procedures.
L. Udvardi, L. Szunyogh, K. Palotás, and P. Weinberger, First-principles relativistic study of spin waves in thin magnetic films, Phys. Rev. B 68, 104436 (2003). PRBMDO 0163-1829 10.1103/PhysRevB.68.104436
A. I. Liechtenstein, M. I. Katnelson, V. P. Antropov, and V. A. Gubanov, Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys, J. Magn. Magn. Mater. 67, 65 (1987). JMMMDC 0304-8853 10.1016/0304-8853(87)90721-9
J. B. Staunton, L. Szunyogh, A. Buruzs, B. L. Gyorffy, S. Ostanin, and L. Udvardi, Temperature dependence of magnetic anisotropy: An ab initio approach, Phys. Rev. B 74, 144411 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.74.144411
P. Asselin, R. F. L. Evans, J. Barker, R. W. Chantrell, R. Yanes, O. Chubykalo-Fesenko, D. Hinzke, and U. Nowak, Constrained Monte Carlo method and calculation of the temperature dependence of magnetic anisotropy, Phys. Rev. B 82, 054415 (2010). PRBMDO 1098-0121 10.1103/PhysRevB.82.054415
H. B. Callen and E. Callen, The present status of the temperature dependence of magnetocrystalline anisotropy, and the power law, J. Phys. Chem. Solids 27, 1271 (1966). JPCSAW 0022-3697 10.1016/0022-3697(66)90012-6
Jia Zhang, Christian Franz, Michael Czerner, and Christian Heiliger, Perpendicular magnetic anisotropy in CoFe/MgO/CoFe magnetic tunnel junctions by first-principles calculations, Phys. Rev. B 90, 184409 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.90.184409
R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, and R. W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials, J. Phys. Condens. Matter 26, 103202 (2014). JCOMEL 0953-8984 10.1088/0953-8984/26/10/103202
http://vampire.york.ac.uk.
I. Dzyaloshinsky, A thermodynamic theory of weak ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4, 241 (1958). JPCSAW 0022-3697 10.1016/0022-3697(58)90076-3
T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960). PHRVAO 0031-899X 10.1103/PhysRev.120.91