[en] Engineering and harnessing coherent excitonic transport in organic nanostructures has recently been suggested
as a promising way towards improving manmade light-harvesting materials. However, realizing and testing the
dissipative system-environment models underlying these proposals is presently very challenging in supramolecular
materials. A promising alternative is to use simpler and highly tunable “quantum simulators” built from
programmable qubits, as recently achieved in a superconducting circuit by Potočnik et al. [A. Potočnik et al.,
Nat. Commun. 9, 904 (2018)]. We simulate the real-time dynamics of an exciton coupled to a quantum bath
as it moves through a network based on the quantum circuit of Potočnik et al. Using the numerically exact
hierarchical equations of motion to capture the open quantum system dynamics, we find that an ultrafast but
completely incoherent relaxation from a high-lying “bright” exciton into a doublet of closely spaced “dark”
excitons can spontaneously generate electronic coherences and oscillatory real-space motion across the network
(quantum beats). Importantly,we showthat this behavior also surviveswhen the environmental noise is classically
stochastic (effectively high temperature), as in present experiments. These predictions highlight the possibilities
of designing matched electronic and spectral noise structures for robust coherence generation that do not require
coherent excitation or cold environments.
Disciplines :
Physics Chemistry
Author, co-author :
Chin, Alex; Paris Sorbonne
Mangaud, Etienne; Paris Sorbonne
Atabek, Osman; Université Paris-Sud
Desouter, Michèle ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
Language :
English
Title :
Coherent quantum dynamics launched by incoherent relaxation in a quantum circuit simulator of light harvesting complex
Publication date :
2018
Journal title :
Physical Review. A
ISSN :
2469-9926
eISSN :
2469-9934
Publisher :
American Physical Society, College Park, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
J.-L. Brédas, E. H. Sargent, and G. D. Scholes, Nat. Mater. 16, 35 (2017). 1476-1122 10.1038/nmat4767
G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, Nature (London) 543, 647 (2017). NATUAS 0028-0836 10.1038/nature21425
E. J. O'Reilly and A. Olaya-Castro, Nat. Commun. 5, 3012 (2014) 10.1038/ncomms4012.
A. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. Huelga, and M. Plenio, Nat. Phys. 9, 113 (2013). 1745-2473 10.1038/nphys2515
E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, Nature (London) 463, 644 (2010). 10.1038/nature08811
F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, Nat. Chem. 6, 706 (2014). 1755-4330 10.1038/nchem.2005
C. Kreisbeck and T. Kramer, J. Phys. Chem. Lett. 3, 2828 (2012). 1948-7185 10.1021/jz3012029
N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, Nat. Phys. 9, 10 (2013). 1745-2473 10.1038/nphys2474
H. Lee, Y.-C. Cheng, and G. R. Fleming, Science 316, 1462 (2007). SCIEAS 0036-8075 10.1126/science.1142188
G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 12766 (2010). PNASA6 0027-8424 10.1073/pnas.1005484107
E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. Van Grondelle, Nat. Phys. 10, 676 (2014). 1745-2473 10.1038/nphys3017
A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. USA 106, 17255 (2009). PNASA6 0027-8424 10.1073/pnas.0908989106
H.-B. Chen, N. Lambert, Y.-C. Cheng, Y.-N. Chen, and F. Nori, Sci. Rep. 5, 12753 (2015). 2045-2322 10.1038/srep12753
A. W. Chin, S. F. Huelga, and M. B. Plenio, Philos. Trans. R. Soc. A 370, 3638 (2012). PTRMAD 1364-503X 10.1098/rsta.2011.0224
A. G. Dijkstra and Y. Tanimura, Phys. Rev. Lett. 104, 250401 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.104.250401
E. K. Irish, R. Gómez-Bombarelli, and B. W. Lovett, Phys. Rev. A 90, 012510 (2014). PLRAAN 1050-2947 10.1103/PhysRevA.90.012510
J. Iles-Smith, A. G. Dijkstra, N. Lambert, and A. Nazir, J. Chem. Phys. 144, 044110 (2016). JCPSA6 0021-9606 10.1063/1.4940218
N. Killoran, S. F. Huelga, and M. B. Plenio, J. Chem. Phys. 143, 155102 (2015). JCPSA6 0021-9606 10.1063/1.4932307
P. Malý, O. J. G. Somsen, V. I. Novoderezhkin, T. Mančal, and R. van Grondelle, ChemPhysChem 17, 1356 (2016). CPCHFT 1439-4235 10.1002/cphc.201500965
M. Qin, H. Z. Shen, X. L. Zhao, and X. X. Yi, Phys. Rev. A 96, 012125 (2017). 2469-9926 10.1103/PhysRevA.96.012125
D. H. Santamore, N. Lambert, and F. Nori, Phys. Rev. B 87, 075422 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.075422
R. Stones and A. Olaya-Castro, Chem. 1, 822 (2016). 2451-9294 10.1016/j.chempr.2016.11.014
A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. Wilson, A. W. Chin, D. Zigmantas, D. Egorova, and A. Rao, Nat. Chem. 8, 16 (2016). 1755-4330 10.1038/nchem.2371
S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, Science 344, 1001 (2014). SCIEAS 0036-8075 10.1126/science.1249771
J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. Von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, Nat. Commun. 6, 7755 (2015). 10.1038/ncomms8755
F. Novelli, A. Nazir, G. H. Richards, A. Roozbeh, K. E. Wilk, P. M. Curmi, and J. A. Davis, J. Phys. Chem. Lett. 6, 4573 (2015). 1948-7185 10.1021/acs.jpclett.5b02058
É. Boulais, N. P. Sawaya, R. Veneziano, A. Andreoni, J. L. Banal, T. Kondo, S. Mandal, S. Lin, G. S. Schlau-Cohen, N. W. Woodbury, Nat. Mater. 17, 159 (2018). 1476-1122 10.1038/nmat5033
S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan, and R. H. Friend, Science 343, 512 (2014). SCIEAS 0036-8075 10.1126/science.1246249
E. A. Hemmig, C. Creatore, B. Wu nsch, L. Hecker, P. Mair, M. A. Parker, S. Emmott, P. Tinnefeld, U. F. Keyser, and A. W. Chin, Nano Lett. 16, 2369 (2016). NALEFD 1530-6984 10.1021/acs.nanolett.5b05139
H.-G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. D. Miller, Proc. Natl. Acad. Sci. USA 114, 8493 (2017). PNASA6 0027-8424 10.1073/pnas.1702261114
A. Potočnik, A. Bargerbos, F. A. Schröder, S. A. Khan, M. C. Collodo, S. Gasparinetti, Y. Salathé, C. Creatore, C. Eichler, H. E. Türeci, Nat. Commun. 9, 904 (2018). 2041-1723 10.1038/s41467-018-03312-x
V. May, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley, New York, 2008).
T. Renger, V. May, and O. Kühn, Phys. Rep. 343, 137 (2001). PRPLCM 0370-1573 10.1016/S0370-1573(00)00078-8
G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. Van Grondelle, Nat. Chem. 3, 763 (2011). 1755-4330 10.1038/nchem.1145
P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, New J. Phys. 11, 33003 (2009). NJOPFM 1367-2630 10.1088/1367-2630/11/3/033003
F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, J. Chem. Phys. 131, 105106 (2009). JCPSA6 0021-9606 10.1063/1.3223548
M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019 (2008). NJOPFM 1367-2630 10.1088/1367-2630/10/11/113019
A. W. Chin, A. Datta, F. Caruso, M. B. Plenio, and S. F. Huelga, New J. Phys. 12, 065002 (2010). NJOPFM 1367-2630 10.1088/1367-2630/12/6/065002
H.-B. Chen, P.-Y. Chiu, and Y.-N. Chen, Phys. Rev. E 94, 052101 (2016). 2470-0045 10.1103/PhysRevE.94.052101
S. F. Huelga and M. B. Plenio, Contemp. Phys. 54, 181 (2013). CTPHAF 0010-7514 10.1080/00405000.2013.829687
J. Schulze and O. Kuhn, J. Phys. Chem. B 119, 6211 (2015). JPCBFK 1520-6106 10.1021/acs.jpcb.5b03928
I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017). RMPHAT 0034-6861 10.1103/RevModPhys.89.015001
A. Fruchtman, N. Lambert, and E. M. Gauger, Sci. Rep. 6, 28204 (2016). 2045-2322 10.1038/srep28204
K. H. Hughes, C. D. Christ, and I. Burghardt, J. Chem. Phys. 131, 024109 (2009). JCPSA6 0021-9606 10.1063/1.3159671
A. W. Chin, Á. Rivas, S. F. Huelga, and M. B. Plenio, J. Math. Phys. 51, 092109 (2010). JMAPAQ 0022-2488 10.1063/1.3490188
J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105, 050404 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.105.050404
N. Makri, J. Phys. Chem. A 102, 4414 (1998). JPCAFH 1089-5639 10.1021/jp980359y
U. Manthe, J. Chem. Phys. 128, 164116 (2008). JCPSA6 0021-9606 10.1063/1.2902982
R. Martinazzo, B. Vacchini, K. H. Hughes, and I. Burghardt, J. Chem. Phys. 134, 011101 (2011). JCPSA6 0021-9606 10.1063/1.3532408
P. Nalbach, A. Ishizaki, G. R. Fleming, and M. Thorwart, New J. Phys. 13, 063040 (2011). NJOPFM 1367-2630 10.1088/1367-2630/13/6/063040
J. Prior, I. de Vega, A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev. A 87, 013428 (2013). PLRAAN 1050-2947 10.1103/PhysRevA.87.013428
F. A. Schröder, D. H. Turban, A. J. Musser, N. D. Hine, and A. W. Chin, arXiv:1710.01362.
P. Strasberg, G. Schaller, N. Lambert, and T. Brandes, New J. Phys. 18, 073007 (2016). NJOPFM 1367-2630 10.1088/1367-2630/18/7/073007
Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989). JUPSAU 0031-9015 10.1143/JPSJ.58.101
M. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys. 115, 2991 (2001). JCPSA6 0021-9606 10.1063/1.1385562
A. Ishizaki and Y. Tanimura, J. Phys. Soc. Jpn. 74, 3131 (2005). JUPSAU 0031-9015 10.1143/JPSJ.74.3131
Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006). JUPSAU 0031-9015 10.1143/JPSJ.75.082001
R.-X. Xu and Y. J. Yan, Phys. Rev. E 75, 031107 (2007). PLEEE8 1539-3755 10.1103/PhysRevE.75.031107
J. Strümpfer and K. Schulten, J. Chem. Theory Comput. 8, 2808 (2012). 1549-9618 10.1021/ct3003833
A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009). JCPSA6 0021-9606 10.1063/1.3155372
Q. Shi, L. Chen, G. Nan, R.-X. Xu, and Y. Yan, J. Chem. Phys. 130, 084105 (2009). JCPSA6 0021-9606 10.1063/1.3077918
A. Dodin, T. V. Tscherbul, and P. Brumer, J. Chem. Phys. 144, 244108 (2016). JCPSA6 0021-9606 10.1063/1.4954243
A. C. Han, M. Shapiro, and P. Brumer, J. Phys. Chem. A 117, 8199 (2013). JPCAFH 1089-5639 10.1021/jp4023986
D. J. Gorman, B. Hemmerling, E. Megidish, S. A. Moeller, P. Schindler, M. Sarovar, and H. Haeffner, Phys. Rev. X 8, 011038 (2018). 2160-3308 10.1103/PhysRevX.8.011038
C. Creatore, M. A. Parker, S. Emmott, and A. W. Chin, Phys. Rev. Lett. 111, 253601 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.253601
K. E. Dorfman, D. V. Voronine, S. Mukamel, and M. O. Scully, Proc. Natl. Acad. Sci. USA 110, 2746 (2013). PNASA6 0027-8424 10.1073/pnas.1212666110
D. Gelbwaser-Klimovsky and A. Aspuru-Guzik, Chem. Sci. 8, 1008 (2017). 2041-6520 10.1039/C6SC04350J
D. Newman, F. Mintert, and A. Nazir, Phys. Rev. E 95, 032139 (2017). 2470-0045 10.1103/PhysRevE.95.032139
M. O. Scully, Phys. Rev. Lett. 104, 207701 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.104.207701
Y. Zhang, S. Oh, F. H. Alharbi, G. S. Engel, and S. Kais, Phys. Chem. Chem. Phys. 17, 5743 (2015). PPCPFQ 1463-9076 10.1039/C4CP05310A
F. P. Heinz-Peter Breuer, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).
K. Blum, Density Matrix Theory and Applications (Springer Science & Business Media, New York, 2013).
J. Jeske, D. J. Ing, M. B. Plenio, S. F. Huelga, and J. H. Cole, J. Chem. Phys. 142, 064104 (2015). JCPSA6 0021-9606 10.1063/1.4907370
P. R. Eastham, P. Kirton, H. M. Cammack, B. W. Lovett, and J. Keeling, Phys. Rev. A 94, 012110 (2016). 2469-9926 10.1103/PhysRevA.94.012110
H. Liu, L. Zhu, S. Bai, and Q. Shi, J. Chem. Phys. 140, 134106 (2014). JCPSA6 0021-9606 10.1063/1.4870035
E. Mangaud, C. Meier, and M. Desouter-Lecomte, Chem. Phys. 494, 90 (2017). CMPHC2 0301-0104 10.1016/j.chemphys.2017.07.011
A. Pomyalov, C. Meier, and D. Tannor, Chem. Phys. 370, 98 (2010). CMPHC2 0301-0104 10.1016/j.chemphys.2010.02.017
S. Lorenzo, F. Plastina, and M. Paternostro, Phys. Rev. A 84, 032124 (2011). PLRAAN 1050-2947 10.1103/PhysRevA.84.032124
S. Oviedo-Casado, J. Prior, A. W. Chin, R. Rosenbach, S. F. Huelga, and M. B. Plenio, Phys. Rev. A 93, 020102 (R) (2016). 2469-9926 10.1103/PhysRevA.93.020102
S. L. Smith and A. W. Chin, Phys. Chem. Chem. Phys. 16, 20305 (2014). PPCPFQ 1463-9076 10.1039/C4CP01791A
S. L. Smith and A. W. Chin, Phys. Rev. B 91, 201302 (2015). PRBMDO 1098-0121 10.1103/PhysRevB.91.201302
S. Mostame, P. Rebentrost, A. Eisfeld, A. J. Kerman, D. I. Tsomokos, and A. Aspuru-Guzik, New J. Phys. 14, 105013 (2012). NJOPFM 1367-2630 10.1088/1367-2630/14/10/105013
H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.210401
E.-M. Laine, J. Piilo, and H.-P. Breuer, Phys. Rev. A 81, 062115 (2010). PLRAAN 1050-2947 10.1103/PhysRevA.81.062115
M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson, Phys. Rev. A 89, 042120 (2014). PLRAAN 1050-2947 10.1103/PhysRevA.89.042120
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.