[en] Rare-earth titanates RTiO3 are Mott insulators displaying a rich physical behavior, featuring most notably orbital and spin orders in their ground state. The origin of their ferromagnetic to antiferromagnetic transition as a function of the size of the rare earth however remains debated. Here we show on the basis of symmetry analysis and first-principles calculations that although rare-earth titanates are nominally Jahn-Teller active, the Jahn-Teller distortion is negligible and irrelevant for the description of the ground state properties. At the same time, we demonstrate that the combination of two antipolar motions produces an effective Jahn-Teller-like motion which is the key of the varying spin-orbital orders appearing in titanates. Thus, titanates are prototypical examples illustrating how a subtle interplay between several lattice distortions commonly appearing in perovskites can produce orbital orderings and insulating phases irrespective of proper Jahn-Teller motions.
Disciplines :
Physics
Author, co-author :
Varignon, Julien ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Grisolia, Mathieu
Preziosi, Daniele
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Bibes, Manuel
Language :
English
Title :
Origin of the orbital and spin ordering in rare-earth titanates
Publication date :
04 December 2017
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society
Volume :
96
Pages :
235106
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011). 1947-5454 10.1146/annurev-conmatphys-062910-140445
S. Miyasaka, Y. Okimoto, M. Iwama, and Y. Tokura, Phys. Rev. B 68, 100406 (2003). PRBMDO 0163-1829 10.1103/PhysRevB.68.100406
J. Varignon, N. C. Bristowe, E. Bousquet, and P. Ghosez, Sci. Rep. 5, 15364 (2015). 2045-2322 10.1038/srep15364
J. Greedan, J. Less-Common Met. 111, 335 (1985). JCOMAH 0022-5088 10.1016/0022-5088(85)90207-3
M. Eitel and J. Greedan, J. Less-Common Met. 116, 95 (1986). JCOMAH 0022-5088 10.1016/0022-5088(86)90220-1
A. C. Komarek, H. Roth, M. Cwik, W.-D. Stein, J. Baier, M. Kriener, F. Bourée, T. Lorenz, and M. Braden, Phys. Rev. B 75, 224402 (2007). PRBMDO 1098-0121 10.1103/PhysRevB.75.224402
A. M. Glazer, Acta Crystallogr. Sect. B 28, 3384 (1972). ACBCAR 0567-7408 10.1107/S0567740872007976
T. Katsufuji, Y. Taguchi, and Y. Tokura, Phys. Rev. B 56, 10145 (1997). PRBMDO 0163-1829 10.1103/PhysRevB.56.10145
M. Mochizuki and M. Imada, New J. Phys. 6, 154 (2004). NJOPFM 1367-2630 10.1088/1367-2630/6/1/154
T. Mizokawa, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. B 60, 7309 (1999). PRBMDO 0163-1829 10.1103/PhysRevB.60.7309
M. Cwik, T. Lorenz, J. Baier, R. Müller, G. André, F. Bourée, F. Lichtenberg, A. Freimuth, R. Schmitz, E. Müller-Hartmann, and M. Braden, Phys. Rev. B 68, 060401 (2003). PRBMDO 0163-1829 10.1103/PhysRevB.68.060401
M. Mochizuki and M. Imada, J. Phys. Soc. Jpn. 69, 1982 (2000). JUPSAU 0031-9015 10.1143/JPSJ.69.1982
M. Mochizuki and M. Imada, J. Phys. Soc. Jpn. 70, 2872 (2001). JUPSAU 0031-9015 10.1143/JPSJ.70.2872
E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein, A. Georges, and O. K. Andersen, Phys. Rev. Lett. 92, 176403 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.92.176403
E. Pavarini, A. Yamasaki, J. Nuss, and O. K. Andersen, New J. Phys. 7, 188 (2005). NJOPFM 1367-2630 10.1088/1367-2630/7/1/188
M. Mochizuki and M. Imada, Phys. Rev. Lett. 91, 167203 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.91.167203
J. Akimitsu, H. Ichikawa, N. Eguchi, T. Miyano, M. Nishi, and K. Kakurai, J. Phys. Soc. Jpn. 70, 3475 (2001). JUPSAU 0031-9015 10.1143/JPSJ.70.3475
D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato, J. Appl. Crystallogr. 42, 820 (2009). JACGAR 0021-8898 10.1107/S0021889809028064
J. Perez-Mato, D. Orobengoa, and M. Aroyo, Acta Crystallogr. Sect. A 66, 558 (2010). ACACEQ 0108-7673 10.1107/S0108767310016247
See http://www.me.utexas.edu/∼benedekgroup/ ToleranceFactorCalculator for the tolerance factor calculator provided by Nicole Benedek.
J. B. Goodenough, Annu. Rev. Mater. Sci. 28, 1 (1998). ARMSCX 0084-6600 10.1146/annurev.matsci.28.1.1
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (R) (1993). PRBMDO 0163-1829 10.1103/PhysRevB.47.558
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). CMMSEM 0927-0256 10.1016/0927-0256(96)00008-0
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.136406
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998). PRBMDO 0163-1829 10.1103/PhysRevB.57.1505
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.96.235106 for which includes Refs. [6,11,25,27]. Rare-earth titanates are Mott insulators featuring in their ground state a striking ferromagnetic to antiferromagnetic phase transition as a function of the rare-earth radius. Using symmetry mode analysis, first-principles simulations and a Wannier analysis, we show that although titanates are nominally Jahn-Teller active with their (Equation presented) electronic configuration, the Jahn-Teller distortion is irrelevant for the description of the ground state properties. Alternatively, we demonstrate that a combination of antipolar motions produces a Jahn-Teller-like motion which is the key of the varying spin-orbital properties of these materials.
A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995). PRBMDO 0163-1829 10.1103/PhysRevB.52.R5467
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). PRBMDO 0163-1829 10.1103/PhysRevB.50.17953
We note that it is nearly impossible to converge the electronic wave function for single lattice distortions using the (Equation presented)-AFM order.
We note here that when using the (Equation presented) ground state volume, the Jahn-Teller (Equation presented) motion develops an electronic instability for both (Equation presented) and (Equation presented). Indeed at zero amplitude of the (Equation presented) mode, an energy gain of 1.90 and 0.57 meV is achieved for (Equation presented) and (Equation presented), respectively, when the symmetry of the wave function is removed in the calculation, meaning that the electronic wave function does naturally want to distort to get rid of the electronic degeneracy.
J. Varignon, N. C. Bristowe, and P. Ghosez, Phys. Rev. Lett. 116, 057602 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.057602
N. C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, and P. Ghosez, Nat. Commun. 6, 6677 (2015). 2041-1723 10.1038/ncomms7677
T. Arima, Y. Tokura, and J. B. Torrance, Phys. Rev. B 48, 17006 (1993). PRBMDO 0163-1829 10.1103/PhysRevB.48.17006
Y. Okimoto, T. Katsufuji, Y. Okada, T. Arima, and Y. Tokura, Phys. Rev. B 51, 9581 (1995). PRBMDO 0163-1829 10.1103/PhysRevB.51.9581
I. Loa, X. Wang, K. Syassen, H. Roth, T. Lorenz, M. Hanfland, and Y.-L. Mathis, J. Phys.: Condens. Matter 19, 406223 (2007). JCOMEL 0953-8984 10.1088/0953-8984/19/40/406223
M. N. Grisolia, F. Y. Bruno, D. Sando, H. J. Zhao, E. Jacquet, X. M. Chen, L. Bellaiche, A. Barthélémy, and M. Bibes, Appl. Phys. Lett. 105, 172402 (2014). APPLAB 0003-6951 10.1063/1.4899277
L. Bjaalie, A. Verma, B. Himmetoglu, A. Janotti, S. Raghavan, V. Protasenko, E. H. Steenbergen, D. Jena, S. Stemmer, and C. G. Van de Walle, Phys. Rev. B 92, 085111 (2015). PRBMDO 1098-0121 10.1103/PhysRevB.92.085111
J. Goral and J. Greedan, J. Magn. Magn. Mater. 37, 315 (1983). JMMMDC 0304-8853 10.1016/0304-8853(83)90062-8
A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbiltd, and N. Marzari, Comput. Phys. Commun. 178, 685 (2008). CPHCBZ 0010-4655 10.1016/j.cpc.2007.11.016
N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997). PRBMDO 0163-1829 10.1103/PhysRevB.56.12847
I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001). PRBMDO 0163-1829 10.1103/PhysRevB.65.035109
J. Varignon, M. N. Grisolia, J. Íñiguez, A. Barthélémy, and M. Bibes, npj Quantum Mater. 2, 21 (2017). 2397-4648 10.1038/s41535-017-0024-9
H. Sawada and K. Terakura, Phys. Rev. B 58, 6831 (1998). PRBMDO 0163-1829 10.1103/PhysRevB.58.6831
The Cartesian axes have been aligned along Ti-O directions in order to extract as much as possible pure (Equation presented) orbitals.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.