[en] Sea cucumbers produce saponins as a chemical defense mechanism, however their cells can tolerate the cytotoxic nature of these chemicals. To elucidate the molecular mechanisms behind this tolerance a suite of complementary biophysical tools was used, firstly using liposomes for in vitro techniques then using in silico approaches for a molecular-level insight. The holothuroid saponin Frondoside A, caused significantly less permeabilization in liposomes containing a Δ7 holothuroid sterol than those containing cholesterol and resulted in endothermic interactions versus exothermic interactions with cholesterol containing liposomes. Lipid phases simulations revealed that Frondoside A has an agglomerating effect on cholesterol domains, however, induced small irregular Δ7 sterol clusters. Our results suggest that the structural peculiarities of holothuroid sterols provide sea cucumbers with a mechanism to mitigate the sterol-agglomerating effect of saponins, and therefore to protect their cells from the cytotoxicity of the saponins they produce.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Claereboudt, Emily ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes
Eeckhaut, Igor; Université de Mons - UMONS
Lins, Laurence ✱; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes
Deleu, Magali ✱; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes
✱ Ces auteurs ont contribué de façon équivalente à la publication.
Langue du document :
Anglais
Titre :
How different serols contribute to saponin tolerant plasma membranes in sea cucumbers
Date de publication/diffusion :
2018
Titre du périodique :
Scientific Reports
eISSN :
2045-2322
Maison d'édition :
Nature, Royaume-Uni
Volume/Tome :
8
Pagination :
10845
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Vincken, J.-P., Heng, L., de Groot, A. & Gruppen, H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68, 275-297 (2007).
Kubanek, J. et al. Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia 131, 125-136 (2002).
Genta-Jouve, G., Boughanem, C., Ocaña, O., Pérez, T. & Thomas, O. P. Eryloside W, a triterpenoid saponin from the sponge Dictyonella marsilii. Phytochem. Lett. 13, 252-255 (2015).
Demeyer, M. et al. Molecular diversity and body distribution of saponins in the sea star Asterias rubens by mass spectrometry. CBP, Part B 168, 1-11 (2014).
Demeyer, M. et al. Inter-and intra-organ spatial distributions of sea star saponins by MALDI imaging. Anal. Bioanal. Chem. 407, 8813-8824 (2015).
Kalinin, V. I., Aminin, D. L., Avilov, S. A., Silchenko, A. S. & Stonik, V. A. Triterpene glycosides from sea cucucmbers (holothurioidea, echinodermata). Biological activities and functions. Stud. Nat. Prod. Chem. 35, 135-196 (2008).
Bondoc, K. G. V., Lee, H., Cruz, L. J., Lebrilla, C. B. & Juinio-Meñez, M. A. Chemical fingerprinting and phylogenetic mapping of saponin congeners from three tropical holothurian sea cucumbers. Comp. Biochem. Physiol. B 166, 182-193 (2013).
Caulier, G., Van Dyck, S., Gerbaux, P., Eeckhaut, I. & Flammang, P. Review of saponin diversity in sea cucumbers belonging to the family Holothuriidae. SPC Beche-de-mer Information Bulletin 31, 48-54 (2011).
Caulier, G. et al. Chemical characterization of saponins contained in the body wall and the Cuvierian tubules of the sea cucumber Holothuria (Platyperona) sanctori (Delle Chiaje, 1823). Biochem. Syst. Ecol. 68, 119-127 (2016).
Augustin, J. R. M., Kuzina, V., Andersen, S. B. & Bak, S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72, 435-457 (2011).
Kornprobst, J. M. Substances naturelles d'origine marine: chimiodiversite, pharmacodiversite, biotechnologies. (ed. Tech. and Doc.) 1830-1831 (Lavoisier, 2005).
Bahrami, Y. & Franco, C. Structure Elucidation of New Acetylated Saponins, Lessoniosides A, B, C, D, and E, and Non-Acetylated Saponins, Lessoniosides F and G, from the Viscera of the Sea Cucumber Holothuria lessoni. Mar. Drugs 13, 597-617 (2015).
Bordbar, S., Anwar, F. & Saari, N. High-Value Components and Bioactives from Sea Cucumbers for Functional Foods - A Review. Mar. Drugs 9, 1761-1805 (2011).
Baumann, E. et al. Hemolysis of human erythrocytes with saponin affects the membrane structure. Acta Histochem. 102, 21-35 (2000).
Kalinin, V. I. et al. Hemolytic activities of triterpene glycosides from the holothurian order dendrochirotida: some trends in the evolution of this group of toxins. Toxicon 34, 475-483 (1996).
Mashjoor, S. & Yousefzadi, M. Holothurians antifungal and antibacterial activity to human pathogens in the Persian Gulf. J. Mycol. Med. 27, 46-56 (2017).
Shimada, S. Antifungal Steroid Glycoside from Sea Cucumber. Science 163, 1462 (1969).
Yuan, W.-H., Yi, Y.-H., Xue, M., Zhang, H.-W. & La, M.-P. Two Antifungal Active Triterpene Glycosides from Sea Cucumber Holothuria (Microthele) axiloga. CJNM 6, 105-108 (2008).
Althunibat, O. et al. Antioxidant and cytotoxic properties of two sea cucumbers, Holothuria edulis Lesson and Stichopus horrens Selenka. Acta Biol. Hung. 64, 10-20 (2013).
Tian, X. et al. Saponins: the Potential Chemotherapeutic Agents in Pursuing New Anti-glioblastomaDrugs. Mini Rev. Med. Chem. 13, 1709-1724 (2013).
Eeckhaut, I. et al. Effects of Holothuroid Ichtyotoxic Saponins on the Gills of Free-Living Fishes and Symbiotic Pearlfishes. Biol. Bull. 228, 253-265 (2015).
Moghadam, F. D., Baharara, J., Balanezhad, S. Z., Jalali, M. & Amini, E. Effect of Holothuria leucospilota extract saponin on maturation of mice oocyte and granulosa cells. Res. Pharm. Sci. 11, 130-137 (2016).
Van Dyck, S., Gerbaux, P. & Flammang, P. Qualitative and Quantitative Saponin Contents in Five Sea Cucumbers from the Indian Ocean. Mar. Drugs 8, 173-189 (2010).
Vo, N. N. Q., Fukushima, E. O. & Muranaka, T. Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. J. Nat. Med. 71, 50-58 (2016).
Popov, A. M. Comparative Study of Effects of Various Sterols and Triterpenoids on Permeability of Model Lipid Membranes. J. Evol. Biochem. Physiol. 39, 314-320 (2003).
Popov, A. M., Kalinovskaya, N. I., Kuznetsova, T. A., Agafonova, I. G. & Anisimov, M. M. Role of sterols in the membranotropic activity of triterpene glycosides. Antibiotiki 28, 656-659 (1983).
Brasseur, L. et al. Mechanisms involved in pearlfish resistance to holothuroid toxins. Mar. Biol. 163, 1-14 (2016).
Lorent, J. H., Quetin-Leclercq, J. & Mingeot-Leclercq, M.-P. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org. Biomol. Chem. 12, 8803-8822 (2014).
Lorent, J. et al. Domain Formation and Permeabilization Induced by the Saponin α-Hederin and Its Aglycone Hederagenin in a Cholesterol-Containing Bilayer. Langmuir 30, 4556-4569 (2014).
Avilov, S. A. et al. Process for isolating sea cucumber saponin Frondoside A, and immunomodulatory methods of use. United States Patent. No. US 7. 163, 702 B1 (2007).
Aminin, D. et al. Glycosides from edible sea cucumbers stimulate macrophages via purinergic receptors. Sci. Rep. 6, 1-11 (2016).
Lorent, J. et al. α-Hederin Induces Apoptosis, Membrane Permeabilization and Morphologic Changes in Two Cancer Cell Lines Through a Cholesterol-Dependent Mechanism. Planta Med. 82, 1532-1539 (2016).
Lorent, J., Le Duff, C. S., Quetin-Leclercq, J. & Mingeot-Leclercq, M.-P. Induction of Highly Curved Structures in Relation to Membrane Permeabilization and Budding by the Triterpenoid Saponins,-and-Hederin. J. Biol. Chem. 288, 14000-14017 (2013).
Bangham, A. D. & Horne, R. W. Action of saponin on biological cell membranes. Nature 196, 952-953 (1962).
Brain, K., Hadgraft, J. & Al-Shatalebi, M. Membrane Modification in Activity of Plant Moluscicides. Planta Med. 56, 663 (1990).
Du, X. et al. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol. Sci. 17, 144-34 (2016).
Deleu, M., Crowet, J.-M., Nasir, M. N. & Lins, L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. Biochim. Biophys. Acta-Biomembranes 1838, 3171-3190 (2014).
Abraham, T., Lewis, R. N. A. H., Hodges, R. S. & McElhaney, R. N. Isothermal Titration Calorimetry Studies of the Binding of the Antimicrobial Peptide Gramicidin S to Phospholipid Bilayer Membranes. Biochemistry 44, 11279-11285 (2005).
Heerklotz, H., Tsamaloukas, A. D. & Keller, S. Monitoring detergent-mediated solubilization and reconstitution of lipid membranes by isothermal titration calorimetry. Nat. Protoc. 4, 686-697 (2009).
Zakanda, F. N. et al. Interaction of Hexadecylbetainate Chloride with Biological Relevant Lipids. Langmuir 28, 3524-3533 (2012).
Ghai, R., Falconer, R. J. & Collins, B. M. Applications of isothermal titration calorimetry in pure and applied research-survey of the literature from 2010. J. Mol. Recognit. 25, 32-52 (2011).
Santos, dos A. G. et al. Changes in membrane biophysical properties induced by the Budesonide/Hydroxypropyl-β-cyclodextrin complex. Biochim. Biophys. Acta-Biomembranes 1859, 1930-1940 (2017).
Lins, L. & Brasseur, R. The hydrophobic effect in protein folding. FASEB J. 9, 535-540 (1995).
Lins, L., Brasseur, R. & Malaisse, W. J. Conformational Analysis of Non-sulfonylurea hypoglycemic agents of the meglitinide family. Biochem. Pharmacol. 50, 1879-1884 (1995).
Lins, L. et al. Molecular Determinants of the Interaction Between the C-Terminal Domain of Alzheimer's. J. Neurochem. 73, 758-769 (1999).
Brasseur, R., Killian, J. A., De Kruijff, B. & Ruysschaert, J. M. Conformational analysis of gramicidin0gramicidin interaction at the air/water interface suggests that gramicidin aggregates into tube-like structures similar as found in the gramicidin-induced hexagonal HII phase. Biochim. Biophys. Acta 903, 11-17 (1987).
Ducarme, P., Rahman, M. & Brasseur, R. IMPALA: A Simple Restraint Field to Simulate the Biological Membrane in Molecular StructureStudies. Protein Struct. Funct. Genet. 30, 357-371 (1998).
Deleu, M. et al. Effects of surfactin on membrane models displaying lipid phase separation. Biochim. Biophys. Acta-Biomembranes 1828, 801-815 (2013).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Meth. 9, 676-682 (2012).
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: the R Foundation for Statistical Computing. ISBN: 3-900051-07-0. Available http://www.R-project.org, consulted on 9 Aug 2017 (2011).