Asgharian, M. (2014). On the singularities of the information matrix and multipath change-point problems. Theory Prob. Appl. 58, 546-61.
Asgharian, M., M'Lan, C. E. &Wolfson, D. B. (2002). Length-biased sampling with right-censoring: An unconditional approach. J. Am. Statist. Assoc. 97, 201-9.
Asgharian, M. &Wolfson, D. B. (2005). Asymptotic behavior of the unconditional NPMLE of the length-biased survivor function from right censored prevalent cohort data. Ann. Statist. 33, 2109-31.
Brunel, E., Comte, F. &Guilloux, A. (2008). Estimation strategies for censored lifetimes with a Lexis-diagram type model. Scand. J. Statist. 35, 557-76.
de Uña-Álvarez, J. (2004). Nonparametric estimation under length-biased sampling and Type I censoring:A moment based approach. Ann. Inst. Statist. Math. 56, 667-81.
de Uña-Álvarez, J., Arévalo-Tomé, R. &Otero-Giráldez, M. S. (2009). Nonparametric estimation of households' duration of residence from panel data. J. Real Estate Finan. Econ. 39, 58-73.
Gijbels, I. &Wang, J. L. (1993). Strong representation of the survival function estimator for truncated and censored data with applications. J. Mult. Anal. 47, 210-29.
Gilbert, P. B., Lele, S. R. &Vardi, Y. (1999). Maximum likelihood estimation in semiparametric selection bias models with application to AIDS vaccine trials. Biometrika 86, 27-43.
Horváth, L. (1985). Estimation from a length-biased distribution. Statist. Decis. 3, 91-113.
Huang, C.-Y. &Qin, J. (2011). Nonparametric estimation for length-biased and right-censored data. Biometrika 98, 177-86.
Lo, S. H. &Singh, K. (1986). The product-limit estimator and the bootstrap: Some asymptotic representations. Prob. Theory Rel. Fields 71, 455-65.
Luo, X. &Tsai, W. Y. (2009). Nonparametric estimation for right-censored length-biased data: A pseudo-partial likelihood approach. Biometrika 96, 873-86.
Mandel, M. (2007). Nonparametric estimation of a distribution function under biased sampling and censoring. Complex Datasets and Inverse Problems: Tomography, Networks and Beyond, IMS Lecture Notes-Monograph Series, vol. 54. Beachwood, Ohio: Institute of Mathematical Statistics, pp. 224-38.
Mandel, M.&Betensky, R. A. (2007). Testing goodness of fit of a uniform truncation model. Biometrics 63, 405-12.
Martínez-Camblor, P. &de Uña-Álvarez, J. (2009). Non-parametric k-sample tests: Density functions vs distribution functions. Comp. Statist. Data Anal. 53, 3344-57.
Moreira, C., de Uña-Álvarez, J. &Van Keilegom, I. (2014). Goodness-of-fit tests for a semiparametric model under random double truncation. Comp. Statist. 29, 1365-79.
Schumacher, M. (1984). Two-sample tests of Cramér-von Mises and Kolmogorov-Smirnov-type for randomly censored data. Int. Statist. Rev. 52, 263-81.
Shen, P.-S. (2007). A general semiparametric model for left-truncated and right-censored data. J. Nonparam. Statist. 19, 113-29.
Shen, P.-S. (2009). Semiparametric analysis of survival data with left truncation and right censoring. Comp. Statist. Data Anal. 53, 4417-32.
Stern, Y., Tang, M. X., Albert, M. S., Brandt, J., Jacobs, D. M., Bell, K., Marder, K., Sano, M., Devanand, D., Albert, S. M. et al. (1997). Predicting time to nursing home care and death in individuals with Alzheimer disease. J. Am. Med. Assoc. 277, 806-12.
Tsai, W. Y., Jewell, N. P. &Wang, M. C. (1987). A note on the product-limit estimator under right censoring and left truncation. Biometrika 74, 883-6.
Wang, M. C. (1989). A semiparametric model for randomly truncated data. J. Am. Statist. Assoc. 84, 742-8.
Wang, M. C. (1991). Nonparametric estimation from cross-sectional survival data. J. Am. Statist. Assoc. 86, 130-43.