Silver nanowire; Percolating networks; Percolation onset; Monte Carlo
Abstract :
[en] Planar networks composed of 1-dimensional nanometer scale
objects such as nanotubes or nanowires have been attracting
growing interest in recent years. In this work we directly compare
the percolation threshold of silver nanowire networks to predictions
from Monte Carlo simulations, focusing particularly on understanding
the impact of real world imperfections on the percolation
onset in these systems. This work initially determines the percolation
threshold as calculated from an ideal system using Monte Carlo
methods. On this foundation we address the effects of perturbations
in length, angular anisotropy and radius of curvature of the 1-
dimensional objects, in line with those observed experimentally in
purposely fabricated samples. This work explores why twodimensional
stick models in the literature currently underestimate
the percolation onset in real systems and identifies which of the
network’s features play the most significant role in that deviation.
Disciplines :
Physics
Author, co-author :
Langley, Daniel; Swinburne University of Technology > Department of Telecommunications, Electrical, Robotics and Biomedical Engineering
Lagrange, Mélanie; Univ. Grenoble Alpes > LMGP
Nguyen, Ngoc Duy ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Bellet, Daniel; Univ. Grenoble Alpes > LMGP
Language :
English
Title :
Percolation in networks of 1-dimensional objects: comparison between Monte Carlo simulations and experimental observations
Publication date :
2018
Journal title :
Nanoscale Horizons
ISSN :
2055-6756
eISSN :
2055-6764
Publisher :
Royal Society of Chemistry, United Kingdom
Volume :
3
Pages :
545-550
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 641640 - EJD-FunMat - European Joint Doctorate in Functional Materials Research
Name of the research project :
FICHTRE ANR-13-RMNP-0015- 01
Funders :
ANR - Agence Nationale de la Recherche F.R.S.-FNRS - Fonds de la Recherche Scientifique CE - Commission Européenne
A. Ono J.-I. Kato S. Kawata Phys. Rev. Lett. 2005 95 267407
B. Vigolo C. Coulon M. Maugey C. Zakri P. Poulin Science 2005 309 920 923
J. N. Coleman et al. Phys. Rev. B: Condens. Matter Mater. Phys. 1998 58 R7492
S. Xu O. Rezvanian K. Peters M. A. Zikry Nanotechnology 2013 24 155706
S. De P. J. King P. E. Lyons U. Khan J. N. Coleman ACS Nano 2010 4 7064 7072
G. A. Gelves B. Lin U. Sundararaj J. A. Haber Adv. Funct. Mater. 2006 16 2423 2430
S. Ye A. R. Rathmell Z. Chen I. E. Stewart B. J. Wiley Adv. Mater. 2014 26 6670 6687
D. Langley et al. Nanotechnology 2013 24 452001
T. Sannicolo et al. Small 2016 12 6052 6075
X. Lan et al. Adv. Mater. 2013 25 1769 1773
J. A. Spechler K. A. Nagamatsu J. C. Sturm C. B. Arnold ACS Appl. Mater. Interfaces 2015 7 10556 10562
C.-H. Song C. J. Han B.-K. Ju J.-W. Kim ACS Appl. Mater. Interfaces 2016 8 480 489
G. E. Pike C. H. Seager Phys. Rev. B: Condens. Matter Mater. Phys. 1974 10 1421 1434
C. H. Seager G. E. Pike Phys. Rev. B: Condens. Matter Mater. Phys. 1974 10 1435 1446
J. Li S.-L. Zhang Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2009 80 40104
M. Žeželj I. Stanković Phys. Rev. B: Condens. Matter Mater. Phys. 2012 86 134202
I. Balberg N. Binenbaum Phys. Rev. B: Condens. Matter Mater. Phys. 1983 28 3799 3812
S. Kumar J. Murthy M. Alam Phys. Rev. Lett. 2005 95 066802
R. M. Mutiso M. C. Sherrott A. R. Rathmell B. J. Wiley K. I. Winey ACS Nano 2013 7 7654 7663
M. E. J. Newman R. M. Ziff Phys. Rev. Lett. 2000 85 4104 4107
M. E. J. Newman R. M. Ziff Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2001 64 16706
D. P. Langley, Silver nanowire networks: effects of percolation and thermal annealing on physical properties, PhD thesis, Université de Grenoble, Université de Liège, 2014
D. P. Langley et al. Sol. Energy Mater. Sol. Cells 2014 125 318 324
M. Lagrange et al. Nanoscale 2015 7 17410 17423
Matlab Available at: http://www.mathworks.com, accessed: 10th September 2016