North Africa; Mediterranean biodiversity hotspot; new species; morphology; Cytochrome b; D-loop control
Abstract :
[en] Two new species of Luciobarbus are described from the Mediterranean Sea basin in Morocco and Algeria. Their monophyly and phylogenetic placement are resolved by molecular analyses using two mitochondrial markers (cyt b and Dloop). Luciobarbus lanigarensis, new species, from the Tafna River drainage in Algeria and Morocco, is distinguished by having orange fins, a great predorsal length (52–59% SL) and a very long pectoral fin (79–90% HL). Luciobarbus numidiensis, new species, from the El-Kébir River drainage in Algeria, is distinguished by having a golden pectoral-fin margin, 43–47+1–3 lateral line scales and a very long anal-fin (19–23%).
Disciplines :
Zoology
Author, co-author :
Brahimi, Amina ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Zoogéographie
Libois, Roland ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Zoogéographie
Henrard, Arnaud
Freyhof, Jörg
Language :
English
Title :
Luciobarbus lanigarensis and L. numidiensis, two new species of barbels from the Mediterranean Sea basin in North Africa (Teostei: Cyprinidae)
Alternative titles :
[fr] Luciobarbus lanigarensis et L. numidiensis, deux nouvelles espèces de barbeaux dans la bassin de la Méditerranée de l'Afrique du nord (Teostei: Cyprinidae)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Brahimi, A., Freyhof, J., Henrard, A. & Libois, R. (2017) Luciobarbus mascarensis and Luciobarbus chelifensis (Cyprinidae): two new species in Algeria. Zootaxa, 4277 (1), 32-50. https://doi.org/10.11646/zootaxa.4277.1.3
Casal-Lopez, M., Perea, S., Yahyaoui, A. & Doadrio, I. (2015) Taxonomic review of the genus Luciobarbus Heckel; 1843 (Actinopterygii, Cyprinidae) from northwestern Morocco with the description of three new species. Graellsia, 71, 1-24 https://doi.org/10.3989/graellsia.2015.v71.135
Clavero, M., Qninba, A., Riesco, M., Esquivias, J., Calzada, J. & Delibes, M. (2017) Fish in Mo- roccan desert rives: the arid extreme of Mediterranean streams. Fishes in Mediterranean Environments, 003, 1-21. https://doi.org/10.29094/FiSHMED.2017.003
Doadrio, I., Casal-López, M. & Perea, S. (2016a) Taxonomic remarks on Barbus moulouyensis Pellegrin, 1924 (Actinopterygii, Cyprinidae) with the description of a new species of Luciobarbus Heckel, 1843 from Morocco. Graellsia, 72, 1-24. https://doi.org/10.3989/graellsia.2016.v72.174
Doadrio, I., Casal-López, L. Perea, S. & Yahyaoui, A. (2016b) Taxonomy of rheophilic Luciobarbus Heckel, 1842 (Actinopterygii, Cyprinidae) from Morocco with the description of two new species. Graellsia, 72, 1-17. https://doi.org/10.3989/graellsia.2015.v71.135
Felsenstein, J. (1981) Evolutionary tree from DNA sequences, a maximum likelihood approach, Journal of Molecular Evolution, 17, 368-376. https://doi.org/10.1007/BF01734359
Geiger, M.F., Herder, F., Monaghan, M.T., Almada, V., Barbieri, R., Bariche, M., Berrebi, P., Bohlen, J., Casal-Lopez, M., Delmastro, G.B. Denys, G.P., Dettai, A., Doadrio, I., Kalogianni, E., Kärst, H., Kottelat, M., Kovacic, M., Laporte, M., Lorenzoni, M., Marcic, Z., Özulug, M., Perdices, A., Perea, S., Persat, H., Porcelotti, S., Puzzi, C., Robalo, J., Šanda, R., Schneider, M., Šlechtová, V., Stoumboudi, M., Walter, S. & Freyhof, J. (2014) Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Molecular Ecology Resources, 14, 1210-1221. https://doi.org/10.1111/1755-0998.12257
Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biolology and Evolution, 27, 221-224. https://doi.org/10.1093/molbev/msp259
Hasegawa, M., Kishino, H. & Yano, T. (1985) Dating of the human-ape split by a molecular clock by michondrial DNA. Journal of Molecular Evolution, 22, 160-174. https://doi.org/10.1007/BF02101694
Iguchi, K., Tanimura, Y. & Nishida, M. (1997) Sequence divergence in the mtDNA control region of amphidromous and landlocked forms of ayu. Fish Sciences, 63, 901-905. https://doi.org/10.2331/fishsci.63.901
Katoh, K. & Standley, D.M. (2013) MAFFT Multiple sequence alignment Software Version 7. Improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780. https://doi.org/10.1093/molbev/mst010
Kimura, M. (1980) Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, 78, 454-458. https://doi.org/10.1073/pnas.78.1.454
Kottelat, M. & Freyhof, J. (2007). Handbook of European Freshwater Fishes. Cornol, Suisse, xiv + 646 pp.
Lanave, C., Preparata, G., Saccone, C. & Serio, G. (1984) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution, 20, 86-93. https://doi.org/10.1007/BF02101990
Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biolology and Evolution, 34, 772-773. https://doi.org/10.1093/molbev/msw260
Nishida, M., Ohkawa, T. & Iwata, H. (1998) Methods of analysis of genetic population structure with mitochondrial DNA markers. Fish Genetics and Breeding Science, 26, 81-100. https://doi.org/10.1371/journal.pone.0179706
Palumbi, S.R. (1996) Nucleic acids II: The polymerase chain reaction. In: Hillis, D.M., Moritz, C. & Mable, B.K. (Eds.), Molecular Systematic. 2nd Edition. Sinauer, Sunderland, MA, pp. 5-247.
Perdices, A. & Doadrio, I. (2001) The molecular systematics and biogeography of the European cobitids based on mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 19, 468-478. https://doi.org/10.1006/mpev.2000.0900
Rambaut, A. (2009) FigTree. Version 1.4.2. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 2 May 2017)
Rodríguez, F., Oliver, J.L., Marín, A. & Medina, J.R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 142 (4), 485-501. https://doi.org/10.1016/S0022-5193(05)80104-3
Ronquist. F., Teslenko, M., Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2. Efficient Bayesian phylogenetic inference and model choice across a large, model space. Systematic Biology, 61, 539-542. https://doi.org/10.1093/sysbio/sys029
Sukumaran, J. & Holder, M.T. (2010) DendroPy, a Python library for phylogenetic computing. Bioinformatics, 26, 1569-1571. https://doi.org/10.1093/bioinformatics/btq228
Sukumaran, J. & Holder, M.T. (2015) SumTrees. Phylogenetic tree Summarization, 4.0.0 Available from: https://github.com/jeetsukumaran/Dendrophy (accessed 2 May 2017)
Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564-577. https://doi.org/10.1080/10635150701472164
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) Molecular Evolutionary Genetics Analysis: MEGA version 6.0. Molecular Biology and Evolution 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences (American Mathematical Society), 17, 5786.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.