[en] Zinc oxide (ZnO) nanostructures have been synthesized by a simple controlled precipitation method to study the effects of the type solvent – including water, acetic acid and ethylene glycol – on the formation of ZnO and on its photocatalytic activity for the decomposition of H2O2 in aqueous solution. Scanning electron microscopy (SEM) and synchrotron-based X-ray diffraction (XRD) were used to determine the morphology, crystallinity, and chemical composition of the ZnO structures. Raman spectroscopy and photoluminescence measurements were carried out to determine the nature of the defects present in the different ZnO nanostructures and how they affect the photocatalytic activity. Based on the results, we propose plausible growth mechanisms underlying the formation of ZnO with different morphology, according to the solvent used during the synthesis. A direct relation between the photocatalytic activity and the defects type was established, suggesting that defects play a vital role in modulating the photocatalytic response.
Disciplines :
Materials science & engineering Chemical engineering Chemistry
Author, co-author :
Montero-Munoz, M.; University of Brasilia, Brazil > Institute of Physics
Ramos-Ibarra, J. E.; University of Brasilia, Brazil > Institute of Physics
Rodríguez-Páez, Jorge E.; University of Cauca, Colombia > Department of Physics
Teodoro, Marcio D.; Federal University of São Carlos, Brazil > Department of Physics
Marques, Gilmar E.; Federal University of São Carlos, Brazil > Department of Physics
Sanabria, Alfonso R.; University of Cauca, Colombia > Department of Chemistry
Cajas, Paola C.; University of Brasilia, Brazil > Department of Mechanical Engineering
Pàez Martinez, Carlos ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Heinrichs, Benoît ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Coaquira, Jose A. H.; University of Brasilia, Brazil > Institute of Physics
Language :
English
Title :
Role of defects on the enhancement of the photocatalytic response of ZnO nanostructures
Kołodziejczak-Radzimska, A., Jesionowski, T., Zinc oxide—from synthesis to application: a review. Materials 7 (2014), 2833–2881.
Ameta, R., Ameta, S.C., Photocatalysis: Principles and Applications. 2016, CRC Press.
Ramos, J.E., Montero-Muñoz, M., Coaquira, J.A.H., Rodríguez-Páez, J.E., Evidence of a cluster glass-like behavior in Fe-doped ZnO nanoparticles. J. Appl. Phys., 115, 2014, 17E123.
Ramos, J.E., Montero-Muñoz, M., Coaquira, J.A.H., Rodríguez-Páez, J.E., Mn-doping effects on structure and magnetic properties of ZnO nanoparticles. J. Low Temp. Phys. 179 (2015), 42–47.
Hadis, M., Ümit, Ö., Zinc Oxide: Fundamentals, Materials and Device Technology. 2009, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Y.M., Li, J.H., Hong, R.Y., Large scale synthesis of ZnO nanoparticles via homogeneous precipitation. J. Central South Univ. 19 (2012), 863–868.
Guo, J., Peng, C., Synthesis of ZnO nanoparticles with a novel combustion method and their C 2 H 5 OH gas sensing properties. Ceram. Int. 41 (2015), 2180–2186.
Alwan, R.M., Kadhim, Q.A., Sahan, K.M., Ali, R.A., Mahdi, R.J., Kassim, N.A., Jassim, A.N., Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Nanosci. Nanotechnol. 5 (2015), 1–6.
Elen, K., Van den Rul, H., Hardy, A., Van Bael, M.K., D'Haen, J., Peeters, R., Franco, D., Mullens, J., Hydrothermal synthesis of ZnO nanorods: a statistical determination of the significant parameters in view of reducing the diameter. Nanotechnology, 20, 2009, 055608.
Anand, K., Varghese, S., Kurian, T., Synthesis of ZnO nano rods through mechano-chemical route: a solvent free approach. Int. J. Theor. Appl. Sci., 6, 2014, 87.
Dakhlaoui, A., Jendoubi, M., Smiri, L.S., Kanaev, A., Jouini, N., Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology. J. Cryst. Growth 311 (2009), 3989–3996.
Avila, H., Cruz, M., Villegas, M., Caballero, C., Rodríguez-Páez, J.E., Estudio comparativo de dos métodos de síntesis para la obtención de polvos cerámicos de ZnO-Pr. Bol. Soc. Esp Ceram. 43 (2004), 740–744.
Rodríguez-Páez, J.E., Caballero, A., Villegas, M., Moure, C., Duran, P., Fernandez, J., Controlled precipitation methods: formation mechanism of ZnO nanoparticles. J. Eur. Ceram. Soc. 21 (2001), 925–930.
Moharram, A., Mansour, S., Hussein, M., Rashad, M., Direct precipitation and characterization of ZnO nanoparticles. J. Nanomater., 2014, 2014, 20.
Flores, N.M., Pal, U., Galeazzi, R., Sandoval, A., Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv. 4 (2014), 41099–41110.
Xu, L., Hu, Y.L., Pelligra, C., Chen, C.H., Jin, L., Huang, H., Sithambaram, S., Aindow, M., Joesten, R., Suib, S.L., ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater. 21 (2009), 2875–2885.
Carvalho, A., Araújo, D., Canova, H., Rodella, C., Barrett, D., Cuffini, S., Costa, R., Nunes, R., X-ray powder diffraction at the XRD1 beamline at LNLS. J. Synchrotron Radiat. 23 (2016), 1501–1506.
Thompson, P., Cox, D., Hastings, J., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 20 (1987), 79–83.
Toby, B.H., Von Dreele, R.B., GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46 (2013), 544–549.
Páez, C.A., Liquet, D.Y., Calberg, C., Lambert, S.D., Willems, I., Germeau, A., Pirard, J.P., Heinrichs, B., Study of photocatalytic decomposition of hydrogen peroxide over ramsdellite-MnO 2 by O 2-pressure monitoring. Catal. Commun. 15 (2011), 132–136.
Kumar, S., Sahare, P., Effects of annealing on the surface defects of zinc oxide nanoparticles. Nano, 7, 2012, 1250022.
Ahmed, F., Arshi, N., Anwar, M., Danish, R., Koo, B.H., Morphological evolution of ZnO nanostructures and their aspect ratio-induced enhancement in photocatalytic properties. RSC Adv. 4 (2014), 29249–29263.
Scarano, D., Bertarione, S., Spoto, G., Zecchina, A., Arean, C.O., FTIR spectroscopy of hydrogen, carbon monoxide, and methane adsorbed and co-adsorbed on zinc oxide. Thin Solid Films 400 (2001), 50–55.
ALOthman, Z.A., A review: fundamental aspects of silicate mesoporous materials. Materials 5 (2012), 2874–2902.
Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., Liu, R., Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep., 4, 2014.
Amin, G., Asif, M., Zainelabdin, A., Zaman, S., Nur, O., Willander, M., Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J. Nanomater., 2011, 2011, 5.
Gupta, J., Bhargava, P., Bahadur, D., Morphology dependent photocatalytic and magnetic properties of ZnO nanostructures. Physica B 448 (2014), 16–19.
Dietrich, H.G., Johnston, J., Equilibrium between crystalline zinc hydroxide and aqueous solutions of ammonium hydroxide and of sodium hydroxide. J. Am. Chem. Soc. 49 (1927), 1419–1431.
Pawar, R., Shaikh, J., Babar, A., Dhere, P., Patil, P., Aqueous chemical growth of ZnO disks, rods, spindles and flowers: pH dependency and photoelectrochemical properties. Sol. Energy 85 (2011), 1119–1127.
Kawano, T., Imai, H., A simple preparation technique for shape-controlled zinc oxide nanoparticles: Formation of narrow size-distributed nanorods using seeds in aqueous solutions. Colloids Surf., A 319 (2008), 130–135.
Rodríguez-Páez, J.E., Caballero, A., Ocana, M., Moure, C., Durán, P., Fernández, J., Synthesis of nanoparticle ZnO powders by controlled precipitation. Ceram. Trans 83 (1997), 19–26.
M.R. Wagner, Fundamental properties of excitons and phonons in ZnO: A spectroscopic study of the dynamics, polarity, and effects of external fields, in, Technische Universität Berlin, 2010.
Park, W., Jun, Y., Jung, S., Yi, G.C., Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett. 82 (2003), 964–966.
Djurišić A., Leung, Y., Tam, K., Hsu, Y., Ding, L., Ge, W., Zhong, Y., Wong, K., Chan, W., Tam, H., Defect emissions in ZnO nanostructures. Nanotechnology, 18, 2007, 095702.
Htay, M.T., Itoh, M., Hashimoto, Y., Ito, K., Photoluminescence properties and morphologies of submicron-sized ZnO crystals prepared by ultrasonic spray pyrolysis Jpn. J. Appl. Phys., 47, 2008, 541.
Prucnal, S., Wu, J., Berencén, Y., Liedke, M., Wagner, A., Liu, F., Wang, M., Rebohle, L., Zhou, S., Cai, H., Engineering of optical and electrical properties of ZnO by non-equilibrium thermal processing: The role of zinc interstitials and zinc vacancies. J. Appl. Phys., 122, 2017, 035303.
Huang, Z., Chai, C., Cao, B., Temperature-dependent emission shifts of peanutlike ZnO microrods synthesized by a hydrothermal method. Cryst. Growth Des. 7 (2007), 1686–1689.
Willander, M., Nur, O., Sadaf, J.R., Qadir, M.I., Zaman, S., Zainelabdin, A., Bano, N., Hussain, I., Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3 (2010), 2643–2667.
Janotti, A., Van de Walle, C.G., Native point defects in ZnO. Phys. Rev. B, 76, 2007, 165202.
Djurišić A., Leung, Y., Tam, K., Ding, L., Ge, W., Chen, H., Gwo, S., Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Appl. Phys. Lett., 88, 2006, 103107.
Tam, K., Cheung, C., Leung, Y., Djurišić A., Ling, C., Beling, C., Fung, S., Kwok, W., Chan, W., Phillips, D., Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 110 (2006), 20865–20871.
Alvi, N., Ul Hasan, K., Nur, O., Willander, M., The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res. Lett., 6, 2011, 130.
Schirra, M., Schneider, R., Reiser, A., Prinz, G., Feneberg, M., Biskupek, J., Kaiser, U., Krill, C., Thonke, K., Sauer, R., Stacking fault related 3.31− eV luminescence at 130− meV acceptors in zinc oxide. Physical Review B, 77, 2008, 125215.
Herrmann, J.M., Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. RL Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill). Top. Catal. 34 (2005), 49–65.
Muñoz-Espí R., Jeschke, G., Lieberwirth, I., Gómez, C.M., Wegner, G., ZnO− latex hybrids obtained by polymer-controlled crystallization: a spectroscopic investigation. J. Phys. Chem. B 111 (2007), 697–707.