Detry, R., Piater, J.H.: Hierarchical integration of local 3D features for probabilistic pose recovery. In: Robot Manipulation: Sensing and Adapting to the Real World (Workshop at Robotics, Science and Systems) (2007)
Epshtein, B., Ullman, S.: Feature hierarchies for object classification. In: IEEE International Conference on Computer Vision (2005)
Fidler, S., Leonardis, A.: Towards scalable representations of object categories: Learning a hierarchy of parts. In: CVPR 2007 (2007)
Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193-202 (1980)
Ihler, A.T., Sudderth, E.B., Freeman, W.T., Willsky, A.S.: Efficient multiscale sampling from products of Gaussian mixtures. In: Neural Information Processing Systems (2003)
Jordan, M.I., Weiss, Y.: Graphical models: Probabilistic inference. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn. MIT Press, Cambridge (2002)
Krüger, N., Wörgötter, F.: Multi-modal primitives as functional models of hyper-columns and their use for contextual integration. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 157-166. Springer, Heidelberg (2005)
Marr, D., Nishihara, H.K.: Representation and recognition of the spatial organization of three dimensional shapes. Proceedings of the Royal Society of London B 200, 269-294 (1978)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)
Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. (1999)
Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. Technical report, Mitsubishi Electric Research Laboratories (2002)