[en] Optimal Control methods are increasingly used for the control of multibody systems (MBS). This work analyzes the different dynamic formulations and compare their performances in solving Optimal Control Problem. The focus is on minimal coordinates and the derivation of the dynamics via the recursive methods for treelike MBS (i.e., the so-called Newton-Euler and Order-N recursive algorithms). The different formulations are introduced and their derivations are discussed. A benchmark case study (i.e., a 3D series manipulator balancing an inverted pendulum) is modeled and a series of manipulation tasks (movement of the end effector in the 3D space) are performed. The OCP is formulated and solved with the help of the CasADi software while the dynamic formulations are generated by the Robotran software. Results show that the implicit and semi-explicit formulations derived via the Newton-Euler recursive algorithm lead to faster computation of the OCP than the explicit formulations. This is explained by a more compact expression for the implicit dynamics. However, a lower number of high local minima is observed with the explicit formulations for the most extreme robot manipulations.
Disciplines :
Mechanical engineering
Author, co-author :
Docquier, Quentin
Bruls, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Fisette, Paul
Language :
English
Title :
Comparison and analysis of multibody dynamics formalisms for solving optimal control problem
Publication date :
2019
Main work title :
Proceedings of the IUTAM Symposium on Intelligent Multibody Systems - Dynamics, Control, Simulation
Bastos, G., Seifried, R., Bruls, O.: Inverse dynamics of serial and parallel underactuated multibody system using a DAE optimal control approach. Multibody Sys. Dyn. 30, 359–376 (2013)
Baumgarte, J.: Stabilization of constraints and integrals of motion. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)
Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM, Philadelphia (2010)
Björkenstam, S., Carlson, J.S., Lennartson, B.: Exploiting sparsity in the discrete mechanics and optimal control method with application to human motion planning. In: Proceedings of 11th IEEE International Conference on Automation Science and Engineering, Gothenburg, pp. 769–774 (2015)
Diehl, M., Bock, H., Diedam, H., Wieber, P.B.: Fast direct multiple shooting algorithms for optimal robot control. In: Diehl M., Mombaur, K. (eds.) Fast Motions in Biomechanics and Robotics. Lecture Notes in Control and Information Sciences, vol. 340. Springer, Berlin/New York (2006)
Docquier, N., Poncelet, A., Fisette, P.: Robotran: a powerful symbolic generator of multibody models. Mech. Sci. 4, 199–219 (2013)
Fisette, P.: Génération Symbolique des Equations du Mouvement de Systèmes Multicorps et Application dans le Domaine Ferroviaire. Ph.D. thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium (1994)
Fisette, P., Samin, J.C.: Symbolic generation of large multibody system dynamic equations using a new semi-explicit Newton/Euler recursive scheme. Arch. Appl. Mech. 66, 187–199 (1996)
Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Other Titles in Applied Mathematics, vol. 105. SIAM, Philadelphia (2008)
Gros, S., Zanon, M., Diehl, M.: Nonlinear MPC and MHE for mechanical multi-body systems with application to fast tethered airplanes. In: IFAC Conference on Nonlinear Model Predictive Control, Noordwijkerhout, pp. 86–93 (2012)
Iwamura, M., Eberhard, P., Schiehlen W., Seifried R.: A general purpose algorithm for optimal trajectory planning of closed loop multibody systems. In: Arczewski, K. (ed.) Multibody Dynamics: Computational Methods and Applications. Computational Methods in Applied Sciences, vol. 23. Springer, Dordrecht (2011)
Luh, J.-Y.-S., Walker, N.-W., Paul, R.-P.-C.: On-line computational scheme for mechanical manipulators. J. Dyn. Syst. Meas. Control 102, 69–76 (1980)
Manara, S., Gabiccini, M., Artoni, A., Diehl, M.: On the integration of singularity-free representations of SO(3) for direct optimal control. Nonlinear Dyn. 90, 1223–1241 (2017)
Schwertassek, R., Rulka, W.: Aspects of efficient and reliable multibody systems simulation. In: Haug, E.J., Deyo, R.C. (eds.) Real-Time Integration Methods for Mechanical System Simulation. NATO ASI Series F, vol. 69, pp. 55–96. Springer, Berlin/Heidelberg (1989)
Siebert, R., Betsch, P.: A Hamiltonian conserving indirect optimal control method for multibody dynamics. In: Proceedings in Applied Mathematics and Mechanics, vol. 12. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012)
Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter, J., Diehl M.: Time-energy optimal path tracking for robots: a numerically efficient optimization approach. In: 10th IEEE International Workshop on Advanced Motion Control, Trento, pp. 727–732 (2008)
von Stryk, O., Schlemmer, M.: Optimal control of the industrial robot manutec R3. In: Bulirsch, R. (ed.) Computational Optimal Control. ISNM International Series of Numerical Mathematics, vol. 115. Birkhäuser, Basel/Boston (1994)
Wächter, A.: An interior point algorithm for large-scale nonlinear optimization with applications in process engineering, Ph.D. thesis, Carnegie Mellon University (2002)
Wehage, R.-A., Haug, E.-J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 134, 247–255 (1982)