[en] A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ahmed F., Rajaratnam N. Three-dimensional turbulent boundary layers: a review. J. Hydraulic Res. 1997, 35(1):81-98.
Ashgriz N., Poo J. FLAIR: Flux line-segment model for advection and interface reconstruction. J. Comput. Phys. 1991, 93(2):449-468. Elsevier.
Berberovic E. Investigation of Free-surface Flow Associated with Drop Impact: Numerical Simulations and Theoretical Modeling 2010, Imperial College of Science, Technology and Medicine, UK.
Bidone G. Le Remou et sur la Propagation des Ondes 1819, 12:21-112. Report to Académie Royale des Sciences de Turin, séance.
Biswas R., Strawn R.C. Tetrahedral and hexahedral mesh adaptation for CFD problems. Appl. Numer. Math. 1998, 26(1):135-151. Elsevier.
Blocken B., Gualtieri C. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Environ. Model. Softw. 2012, 33:1-22.
Bombardelli F.A., Meireles I., Matos J. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ. Fluid Mech. 2011, 11(3):263-288. Springer.
Bombardelli F.A. Computational multi-phase fluid dynamics to address flows past hydraulic structures. 4th IAHR International Symposium on Hydraulic Structures, 9-11 February 2012, Porto, Portugal 2012, 978-989-8509-01-7.
Borges J.E., Pereira N.H., Matos J., Frizell K.H. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows. Exp. fluids 2010, 48(1):17-31.
Borue V., Orszag S., Staroslesky I. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid Mech. 1995, 286:1-23.
Boussinesq J. Theorie de l'intumescence liquide, applelee onde solitaire ou de translation, se propageantdans un canal rectangulaire. Comptes Rendus l'Academie Sci. 1871, 72:755-759.
Bradley J.N., Peterka A.J. The hydraulic design of stilling Basins : hydraulic jumps on a horizontal Apron (Basin I). Proceedings ASCE, J. Hydraulics Division 1957.
Bradshaw P. Understanding and prediction of turbulent flow. Int. J. heat fluid flow 1996, 18(1):45-54. Elsevier.
Bung D.B. Non-intrusive detection of air-water surface roughness in self-aerated chute flows. J. Hydraulic Res. 2013, 51(3):322-329.
Bung D., Schlenkhoff A. Self-aerated Skimming Flow on Embankment Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer 2010, IAHR European Congress.
Caisley M.E., Bombardelli F.A., Garcia M.H. Hydraulic Model Study of a Canoe Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63 1999, University of Illinois at Urbana-Champaign.
Carvalho R., Lemos C., Ramos C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraulic Res. 2008, 46(6):739-752.
Celik I.B., Ghia U., Roache P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008, 130(7):1-4. ASME.
Chachereau Y., Chanson H.Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 2011, 35(6):896-909.
Energy Dissipation in Hydraulic Structures 2015, CRC Press. H. Chanson (Ed.).
Chanson H. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/Fluids 26.3(2007) 2007, 367-384.
Chanson H., Carvalho R. Hydraulic jumps and stilling basins. Chapter 4. Energy Dissipation in Hydraulic Structures 2015, CRC Press, Taylor & Francis Group, ABalkema Book. H. Chanson (Ed.).
Chanson H., Gualtieri C. Similitude and scale effects of air entrainment in hydraulic jumps. J. Hydraulic Res. 2008, 46(1):35-44.
Chanson H., Lubin P. Discussion of "Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators" Appears in the Canadian Journal of Civil Engineering 36(5): 826-838. Can. J. Civ. Eng. 2010, 37(1):135-138.
Chanson H. Drag reduction in open channel flow by aeration and suspended load. J. Hydraulic Res. 1994, 32:87-101. Taylor & Francis.
Chanson H., Montes J.S. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 1995, 121(2):129-144.
Chanson H., Brattberg T. Experimental study of the air-water shear flow in a hydraulic jump. Int. J. Multiph. Flow 2000, 26(4):583-607.
Chanson H. Hydraulics of aerated flows: qui pro quo?. J. Hydraulic Res. 2013, 51(3):223-243. Taylor & Francis.
Chaudhry M.H. Open-channel Flow, Springer Science & Business Media 2007.
Chen L., Li Y.A numerical method for two-phase flows with an interface. Environ. Model. Softw. 1998, 13(3):247-255.
Chow V.T. Open Channel Hydraulics 1959, McGraw-Hill Book Company, Inc, New York.
Daly B.J. A technique for including surface tension effects in hydrodynamic calculations. J. Comput. Phys. 1969, 4(1):97-117. Elsevier.
De Padova D., Mossa M., Sibilla S., Torti E. 3D SPH modeling of hydraulic jump in a very large channel. J. Hydraulic Res. 2013, 51(2):158-173. Taylor & Francis.
Dewals B., André S., Schleiss A., Pirotton M. Validation of a quasi-2D model for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int. Conf. Hydroinformatics 2004, 1:63-70.
Falvey H.T. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep. N. 1980, 81:26429.
Fawer C. Etude de quelquesécoulements permanents à filets courbes ('Study of some Steady Flows with Curved Streamlines') 1937, Thesis, Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
Gualtieri C., Chanson H.Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environ. Fluid Mech. 2007, 7(3):217-238. Springer.
Gualtieri C., Chanson H. Effect of Froude number on bubble clustering in a hydraulic jump. J. Hydraulic Res. 2010, 48(4):504-508.
Hager W., Sinniger R. Flow characteristics of the hydraulic jump in a stilling basin with an abrupt bottom rise. J. Hydraulic Res. 1985, 23(2):101-113. Taylor & Francis.
Hager W.H. Energy Dissipators and Hydraulic Jump, Springer 1992.
Hager W.H., Bremen R. Classical hydraulic jump: sequent depths. J. Hydraulic Res. 1989, 27(5):565-583.
Hartanto I.M., Beevers L., Popescu I., Wright N.G. Application of a coastal modelling code in fluvial environments. Environ. Model. Softw. 2011, 26(12):1685-1695.
Hirsch C. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics 2007, Butterworth-Heinemann, 1.
Hirt C., Nichols B.Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39(1):201-225.
Hyman J.M. Numerical methods for tracking interfaces. Phys. D. Nonlinear Phenom. 1984, 12(1):396-407. Elsevier.
Juez C., Murillo J., Garcia-Navarro P. Numerical assessment of bed-load discharge formulations for transient flow in 1D and 2D situations. J. Hydroinformatics 2013, 15(4).
Keyes D., Ecer A., Satofuka N., Fox P., Periaux J. Parallel Computational Fluid Dynamics' 99: towards Teraflops, Optimization and Novel Formulations 2000, Elsevier.
Kim J.J., Baik J.J. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-ε turbulence model. Atmos. Environ. 2004, 38(19):3039-3048.
Kim S.-E., Boysan F. Application of CFD to environmental flows. J. Wind Eng. Industrial Aerodynamics 1999, 81(1):145-158. Elsevier.
Liu M., Rajaratnam N., Zhu D.Z. Turbulence structure of hydraulic jumps of low Froude numbers. J. Hydraulic Eng. 2004, 130(6):511-520.
Lobosco R., Schulz H., Simoes A. Analysis of Two Phase Flows on Stepped Spillways, Hydrodynamics - Optimizing Methods and Tools 2011, Available from, :, Accessed February 27th 2014. http://www.intechopen.com/books/hyd%20rodynamics-optimizing-methods-and-tools/analysis-of-two-phase-flows-on-stepped-spillways.
Long D., Rajaratnam N., Steffler P.M., Smy P.R. Structure of flow in hydraulic jumps. J. Hydraulic Res. 1991, 29(2):207-218. Taylor & Francis.
Ma J., Oberai A.A., Lahey R.T., Drew D.A. Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat Mass Transf. 2011, 47(8):911-919.
Matos J., Frizell K., André S., Frizell K. On the performance of velocity measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods 2002, 2002:1-11. 10.1061/40655(2002)58.
Meireles I.C., Bombardelli F.A., Matos J.Air entrainment onset in skimming flows on steep stepped spillways: an analysis. J. Hydraulic Res. 2014, 52(3):375-385.
McDonald P. The Computation of Transonic Flow through Two-dimensional Gas Turbine Cascades 1971.
Mossa M. On the oscillating characteristics of hydraulic jumps, Journal of Hydraulic Research. Taylor &Francis 1999, 37(4):541-558.
Murzyn F., Chanson H. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives 2009, Nova Science Publishers.
Murzyn F., Chanson H. Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environ. Fluid Mech. 2009, 2:143-159.
Murzyn F., Mouaze D., Chaplin J.R. Air-water interface dynamic and free surface features in hydraulic jumps. J. Hydraulic Res. 2007, 45(5):679-685.
Murzyn F., Mouaze D., Chaplin J. Optical fiber probe measurements of bubbly flow in hydraulic jumps. Int. J. Multiph. Flow 2005, 31(1):141-154. Elsevier.
Nagosa R. Direct numerical simulation of vortex structures and turbulence scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids 1999, 11:1581-1595.
Noh W.F., Woodward P. SLIC (Simple Line Interface Calculation), Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28-July 2 1976, 330-340. 1976 Twente University, Enschede.
Oertel M., Bung D.B. Initial stage of two-dimensional dam-break waves: laboratory versus VOF. J. Hydraulic Res. 2012, 50(1):89-97.
Olivari D., Benocci C. Introduction to Mechanics of Turbulence 2010, Von Karman Institute for Fluid Dynamics.
Omid M.H., Omid M., Varaki M.E. Modelling hydraulic jumps with artificial neural networks. Proc. ICE-Water Manag. 2005, 158(2):65-70. Thomas Telford.
OpenFOAM OpenFOAM: the Open Source CFD Toolbox User Guide 2011, The Free Software Foundation Inc.
Peterka A.J. Hydraulic design of spillways and energy dissipators. A water resources technical publication. Eng. Monogr. 1984, 25.
Pope S.B. Turbulent Flows 2000, Cambridge university press.
Pfister M. Chute aerators: steep deflectors and cavity subpressure, Journal of hydraulic engineering. Am. Soc. Civ. Eng. 2011, 137(10):1208-1215.
Prosperetti A., Tryggvason G. Computational Methods for Multiphase Flow 2007, Cambridge University Press.
Rajaratnam N. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 1965, 91(HY5):107-132.
Resch F., Leutheusser H. Reynolds stress measurements in hydraulic jumps. J. Hydraulic Res. 1972, 10(4):409-430. Taylor & Francis.
Romagnoli M., Portapila M., Morvan H. Computational simulation of a hydraulic jump (original title, in Spanish: "Simulacioncomputacional del resaltohidraulico"), MecanicaComputacional, XXVIII 2009, 1661-1672.
Rouse H., Siao T.T., Nagaratnam S. Turbulence characteristics of the hydraulic jump. Trans. ASCE 1959, 124:926-966.
Rusche H. Computational Fluid Dynamics of Dispersed Two-phase Flows at High Phase Fractions 2002, Imperial College of Science, Technology and Medicine, UK.
Saint-Venant A. Theorie du movement non permanent des eaux, avec application aux crues des riviereset a l'introduction de mareesdansleurslits 1871, Comptesrendus des seances de l'Academie des Sciences.
Schlichting H., Gersten K. Boundary-layer Theory 2000, Springer.
Spalart P.R. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 2000, 21(3):252-263.
Speziale C.G., Thangam S. Analysis of an RNG based turbulence model for separated flows. Int. J. Eng. Sci. 1992, 30(10). 1379-IN4.
Toge G.E. The Significance of Froude Number in Vertical Pipes: a CFD Study 2012, University of Stavanger, Norway.
Ubbink O. Numerical Prediction of Two Fluid Systems with Sharp Interfaces 1997, Imperial College of Science, Technology and Medicine, UK.
Valero D., García-Bartual R. Calibration of an air entrainment model for CFD spillway applications. Adv. Hydroinformatics 2016, 571-582. P. Gourbesville et al. Springer Water. 10.1007/978-981-287-615-7_38.
Valero D., Bung D.B. Hybrid investigations of air transport processes in moderately sloped stepped spillway flows. E-Proceedings of the 36th IAHR World Congress, 28 June - 3 July, 2015 2015, (The Hague, the Netherlands).
Van Leer B. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys 1977, 23(3):263-275.
Von Karman T. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der WissenschaftenzuGöttingen. Fachgr. 1 Math. 1930, 5:58-76.
Wang H., Murzyn F., Chanson H. Total pressure fluctuations and two-phase flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 2014, 1847:1-16. (DOI: 10.1007/s00348-014-1847-9).
Wang H., Felder S., Chanson H. An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique. Exp. Fluids 55.7(2014) Pap. 2014, 1775:1-18. 10.1007/s00348-014-1775-8.
Wang H., Chanson H.Experimental study of turbulent fluctuations in hydraulic jumps. J. Hydraul. Eng. 2015, 141(7). Paper 04015010, 10 pages. 10.1061/(ASCE)HY.1943-7900.0001010.
Wang H., Chanson H. Integral turbulent length and time scales in hydraulic jumps: an experimental investigation at large Reynolds numbers. E-Proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Netherlands 2015.
Weller H., Tabor G., Jasak H., Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12:620-631.
Wilcox D. Turbulence Modeling for CFD, DCW Industries 1998, La Canada, California (USA).
Witt A., Gulliver J., Shen L. Simulating air entrainment and vortex dynamics in a hydraulic jump. Int. J. Multiph. Flow June 2015, 72:165-180. ISSN 0301-9322. http://www.sciencedirect.com/science/article/pii/S0301932215000336.
Wood I.R. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design Manual No.4, Hydraulic Design Considerations 1991, Balkema Publications, Rotterdam, The Netherlands.
Yakhot V., Orszag S., Thangam S., Gatski T., Speziale C. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: fluid Dynamics (1989-1993). AIP Publ. 1992, 4(7):1510-1520.
Youngs D.L. An interface tracking method for a 3D Eulerian hydrodynamics code. Tech. Rep. 1984, 44(92). 35-35.
Zhang G., Wang H., Chanson H. Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environ. fluid Mech. 2013, 13(2):189-204.
Zhang W., Liu M., Zhu D.Z., Rajaratnam N. Mean and turbulent bubble velocities in free hydraulic jumps for small to intermediate froude numbers. J. Hydraulic Eng. 2014.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.