[en] Congenital infection by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae of the central nervous system, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities (0.1% of all births). To gain insight on the impact of HCMV on neuronal development, we used both neural stem cells from human embryonic stem cells (NSC) and brain sections from infected fetuses and investigated the outcomes of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARgamma), a transcription factor critical in the developing brain. We observed that HCMV infection dramatically impaired the rate of neuronogenesis and strongly increased PPARgamma levels and activity. Consistent with these findings, levels of 9-hydroxyoctadecadienoic acid (9-HODE), a known PPARgamma agonist, were significantly increased in infected NSCs. Likewise, exposure of uninfected NSCs to 9-HODE recapitulated the effect of infection on PPARgamma activity. It also increased the rate of cells expressing the IE antigen in HCMV-infected NSCs. Further, we demonstrated that (1) pharmacological activation of ectopically expressed PPARgamma was sufficient to induce impaired neuronogenesis of uninfected NSCs, (2) treatment of uninfected NSCs with 9-HODE impaired NSC differentiation and (3) treatment of HCMV-infected NSCs with the PPARgamma inhibitor T0070907 restored a normal rate of differentiation. The role of PPARgamma in the disease phenotype was strongly supported by the immunodetection of nuclear PPARgamma in brain germinative zones of congenitally infected fetuses (N = 20), but not in control samples. Altogether, our findings reveal a key role for PPARgamma in neurogenesis and in the pathophysiology of HCMV congenital infection. They also pave the way to the identification of PPARgamma gene targets in the infected brain.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Rolland, Maude ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > GIGA-R : Labo of Molecular Immunol. and Signal Transduction
Cheeran MC, Lokensgard JR, Schleiss MR, Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev. 2009; 22(1):99–126, Table of Contents. doi: 10.1128/CMR.00023-0819136436
Cinque P, Marenzi R, Ceresa D, Cytomegalovirus infections of the nervous system. Intervirology. 1997;40(2–3):85–97. 9450226.
Gabrielli L, Bonasoni MP, Santini D, Piccirilli G, Chiereghin A, Petrisli E, et al. Congenital cytomegalovirus infection: patterns of fetal brain damage. Clinical Microbiology and Infection. 2012;18(10):E419–E27. doi: 10.1111/j.1469-0691.2012.03983.x22882294
Cannon M, Davis K, Washing our hands of the congenital cytomegalovirus disease epidemic. BMC Public Health. 2005;5(1):70. doi: 10.1186/1471-2458-5-70
Tsutsui Y, Kosugi I, Kawasaki H, Arai Y, Han GP, Li L, et al. Roles of neural stem progenitor cells in cytomegalovirus infection of the brain in mouse models. Pathology international. 2008;58(5):257–67. 18429823. doi: 10.1111/j.1440-1827.2008.02221.x
van den Pol AN, Mocarski E, Saederup N, Vieira J, Meier TJ, Cytomegalovirus Cell Tropism, Replication, and Gene Transfer in Brain. J Neurosci. 1999;19(24):10948–65. 10594076
Luo MH, Hannemann H, Kulkarni AS, Schwartz PH, O'Dowd JM, Fortunato EA, Human Cytomegalovirus Infection Causes Premature and Abnormal Differentiation of Human Neural Progenitor Cells. J Virol. 2010;84(7):3528–41. doi: 10.1128/jvi.02161-0920071566
Luo MH, Schwartz PH, Fortunato EA, Neonatal Neural Progenitor Cells and Their Neuronal and Glial Cell Derivatives Are Fully Permissive for Human Cytomegalovirus Infection. Journal of Virology. 2008;82(20):9994–10007. doi: 10.1128/jvi.00943-0818684829
Mutnal MB, Cheeran MCJ, Hu S, Lokensgard JR, Murine Cytomegalovirus Infection of Neural Stem Cells Alters Neurogenesis in the Developing Brain. PLoS ONE. 2011;6(1):e16211. doi: 10.1371/journal.pone.001621121249143
Odeberg J, Wolmer N, Falci S, Westgren M, Seiger A, Soderberg-Naucler C, Human cytomegalovirus inhibits neuronal differentiation and induces apoptosis in human neural precursor cells. J Virol. 2006;80(18):8929–39. 16940505
Odeberg J, Wolmer N, Falci S, Westgren M, Sundtröm E, Seiger Å, et al. Late human cytomegalovirus (HCMV) proteins inhibit differentiation of human neural precursor cells into astrocytes. Journal of Neuroscience Research. 2007;85(3):583–93. 17154414
D'Aiuto L, Di Maio R, Heath B, Raimondi G, Milosevic J, Watson AM, et al. Human Induced Pluripotent Stem Cell-Derived Models to Investigate Human Cytomegalovirus Infection in Neural Cells. PLoS ONE. 2012;7(11):e49700. doi: 10.1371/journal.pone.004970023209593
Nakamura H, Liao H, Minami K, Toyoda M, Akutsu H, Miyagawa Y, et al. Human cytomegalovirus induces apoptosis in neural stem/progenitor cells derived from induced pluripotent stem cells by generating mitochondrial dysfunction and endoplasmic reticulum stress. Herpesviridae. 2013;4(1):2. doi: 10.1186/2042-4280-4-224144363
Stergiopoulos A, Politis PK, The role of nuclear receptors in controlling the fine balance between proliferation and differentiation of neural stem cells. Archives of Biochemistry and Biophysics. 2013;534(1–2):27–37. doi: 10.1016/j.abb.2012.09.00923044345
Fournier T, Tsatsaris V, Handschuh K, Evain-Brion D, PPARs and the Placenta. Placenta. 2007;28(2–3):65–76. 16834993
Heikkinen S, Auwerx J, Argmann CA, PPARgamma in human and mouse physiology. Biochim Biophys Acta. 2007;1771(8):999–1013. 17475546.
Boissart C, Nissan X, Giraud-Triboult K, Peschanski M, Benchoua A, miR-125 potentiates early neural specification of human embryonic stem cells. Development. 2012;139(7):1247–57. 22357933. doi: 10.1242/dev.073627
Boissart C, Poulet A, Georges P, Darville H, Julita E, Delorme R, et al. Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening. Transl Psychiatry. 2013;3:e294. 23962924. doi: 10.1038/tp.2013.71
Couture J- P, Blouin R, The DLK gene is a transcriptional target of PPARg. Biochemical Journal. 2011;438(1):93–101. doi: 10.1042/bj2010184021585338
Schadinger SE, Bucher NLR, Schreiber BM, Farmer SR, PPARgamma regulates lipogenesis and lipid accumulation in steatotic hepatocytes. American Journal of Physiology—Endocrinology and Metabolism. 2005;288(6):E1195–E205. doi: 10.1152/ajpendo.00513.200415644454
Six DA, Dennis EA, The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids. 2000;1488(1–2):1–19.
Allal C, Buisson-Brenac C, Marion V, Claudel-Renard C, Faraut T, Dal Monte P, et al. Human cytomegalovirus carries a cell-derived phospholipase A2 required for infectivity. J Virol. 2004;78(14):7717–26. 15220446.
Leghmari K, Cenac N, Rolland M, Martin H, Rauwel B, Bertrand-Michel J, et al. Cytomegalovirus Infection Triggers the Secretion of the PPARgamma Agonists 15-Hydroxyeicosatetraenoic Acid (15-HETE) and 13-Hydroxyoctadecadienoic Acid (13-HODE) in Human Cytotrophoblasts and Placental Cultures. PLoS One. 2015;10(7):e0132627. 26171612. doi: 10.1371/journal.pone.0132627
Le Faouder P, Baillif V, Spreadbury I, Motta J- P, Rousset P, Chêne G, et al. LC-MS/MS method for rapid and concomitant quantification of pro-inflammatory and pro-resolving polyunsaturated fatty acid metabolites. Journal of Chromatography B. 2013;932(0):123–33.
Rauwel B, Mariame B, Martin H, Nielsen R, Allart S, Pipy B, et al. Activation of peroxisome proliferator-activated receptor gamma by human cytomegalovirus for de novo replication impairs migration and invasiveness of cytotrophoblasts from early placentas. J Virol. 2010;84(6):2946–54. 20042507. doi: 10.1128/JVI.01779-09
Duan SZ, Usher MG, Mortensen RM, Peroxisome Proliferator-Activated Receptor-gamma Mediated Effects in the Vasculature. Circulation Research. 2008;102(3):283–94. doi: 10.1161/circresaha.107.16438418276926
Greenbaum D, Colangelo C, Williams K, Gerstein M, Comparing protein abundance and mRNA expression levels on a genomic scale. Genome biology. 2003;4(9):117. 12952525.
Gry M, Rimini R, Strömberg S, Asplund A, Pontén F, Uhlén M, et al. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics. 2009;10(1):1–14. doi: 10.1186/1471-2164-10-365
Vogel C, Marcotte EM, Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature reviews. 2012;13(4):227–32. 22411467. doi: 10.1038/nrg3185
Gally F, Kosmider B, Weaver MR, Pate KM, Hartshorn KL, Oberley-Deegan RE, FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation. American Journal of Physiology—Lung Cellular and Molecular Physiology. 2013;305(1):L64–L72. doi: 10.1152/ajplung.00276.201223624787
Almeida PE, Carneiro AB, Silva AR, Bozza PT, PPAR gamma; Expression and Function in Mycobacterial Infection: Roles in Lipid Metabolism, Immunity, and Bacterial Killing. PPAR Research. 2012;2012:7. doi: 10.1155/2012/383829
Hampel JK, Brownrigg LM, Vignarajah D, Croft KD, Dharmarajan AM, Bentel JM, et al. Differential modulation of cell cycle, apoptosis and PPARgamma2 gene expression by PPARgamma agonists ciglitazone and 9-hydroxyoctadecadienoic acid in monocytic cells. Prostaglandins, leukotrienes, and essential fatty acids. 2006;74(5):283–93. 16647253.
Negishi M, Shimizu H, Okada S, Kuwabara A, Okajima F, Mori M, 9HODE Stimulates Cell Proliferation and Extracellular Matrix Synthesis in Human Mesangial Cells via PPARgamma. Experimental Biology and Medicine. 2004;229(10):1053–60. 15522842
Zhu H, Cong J- P, Yu D, Bresnahan WA, Shenk TE, Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proceedings of the National Academy of Sciences. 2002;99(6):3932–7. doi: 10.1073/pnas.052713799
Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M, et al. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochemical Society transactions. 2006;34(Pt 6):1341–6. 17073815.
Kielian T, Drew PD, Effects of peroxisome proliferator-activated receptor-γ agonists on central nervous system inflammation. Journal of Neuroscience Research. 2003;71(3):315–25. 12526021
Széles L, Töröcsik D, Nagy L, PPARg in immunity and inflammation: cell types and diseases. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids. 2007;1771(8):1014–30.
Zhao X, Strong R, Zhang J, Sun G, Tsien JZ, Cui Z, et al. Neuronal PPARg Deficiency Increases Susceptibility to Brain Damage after Cerebral Ischemia. The Journal of Neuroscience. 2009;29(19):6186–95. doi: 10.1523/jneurosci.5857-08.200919439596
Katura T, Moriya T, Nakahata N, 15-Deoxy-delta 12,14-prostaglandin J2 biphasically regulates the proliferation of mouse hippocampal neural progenitor cells by modulating the redox state. Mol Pharmacol. 2010;77(4):601–11. 20086036. doi: 10.1124/mol.109.061010
Wada K, Arita M, Nakajima A, Katayama K, Kudo C, Kamisaki Y, et al. Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. Faseb J. 2006;20(11):1785–92. 16940150.
Morales-Garcia JA, Luna-Medina R, Alfaro-Cervello C, Cortes-Canteli M, Santos A, Garcia-Verdugo JM, et al. Peroxisome proliferator-activated receptor γ ligands regulate neural stem cell proliferation and differentiation in vitro and in vivo. Glia. 2010;59(2):293–307.
Wada K, Nakajima A, Katayama K, Kudo C, Shibuya A, Kubota N, et al. Peroxisome proliferator-activated receptor gamma-mediated regulation of neural stem cell proliferation and differentiation. The Journal of biological chemistry. 2006;281(18):12673–81. 16524877.
Wang S-h, Guo Y-j, Yuan Y, Li L, Li F-f, Ye K-p, et al. PPARg-mediated advanced glycation end products regulate neural stem cell proliferation but not neural differentiation through the BDNF-CREB pathway. Toxicology Letters. 2011;206(3):339–46. doi: 10.1016/j.toxlet.2011.07.02621835234
Belzile JP, Stark TJ, Yeo GW, Spector DH, Human cytomegalovirus infection of human embryonic stem cell-derived primitive neural stem cells is restricted at several steps but leads to the persistence of viral DNA. J Virol. 2014;88(8):4021–39. 24453373. doi: 10.1128/JVI.03492-13
Tsutsui Y, Effects of cytomegalovirus infection on embryogenesis and brain development. Congenital Anomalies. 2009;49(2):47–55. doi: 10.1111/j.1741-4520.2009.00222.x19489954
Cimini A, Ceru MP, Emerging roles of peroxisome proliferator-activated receptors (PPARs) in the regulation of neural stem cells proliferation and differentiation. Stem Cell Rev. 2008;4(4):293–303. 18561036. doi: 10.1007/s12015-008-9024-2
Schneider CA, Rasband WS, Eliceiri KW, NIH Image to ImageJ: 25 years of image analysis. Nature methods. 2012;9(7):671–5. 22930834.
Hauser S, Adelmant G, Sarraf P, Wright HM, Mueller E, Spiegelman BM, Degradation of the Peroxisome Proliferator-activated Receptor g Is Linked to Ligand-dependent Activation. Journal of Biological Chemistry. 2000;275(24):18527–33. doi: 10.1074/jbc.M00129720010748014
Koressaar T, Remm M, Enhancements and modifications of primer design program Primer3. Bioinformatics (Oxford, England). 2007;23(10):1289–91. 17379693.
Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M, A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods. 2010;50(4):S1–5. doi: 10.1016/j.ymeth.2010.01.00520215014.