[en] This review covers recent findings on the main categories of thyroid hormone-disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone-disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone-disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss.
Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N & Buss C. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 2017 342 68-100. (https://doi.org/10.1016/j.neuroscience.2015.09.070)
Gilbert ME, Rovet J, Chen Z & Koibuchi N. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology 2012 33 842-852. (https://doi.org/10.1016/j.neuro.2011.11.005)
Henrichs J, Bongers-Schokking JJ, Schenk JJ, Ghassabian A, Schmidt HG, Visser TJ, Hooijkaas H, de Muinck Keizer-Schrama SM, Hofman A, Jaddoe VV, et al. Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: the generation R study. Journal of Clinical Endocrinology and Metabolism 2010 95 4227-4234. (https://doi.org/10.1210/jc.2010-0415)
Stagnaro-Green A & Pearce E. Thyroid disorders in pregnancy. Nature Reviews Endocrinology 2012 8 650-658. (https://doi.org/10.1038/nrendo.2012.171)
Päkkilä F, Männistö T, Pouta A, Hartikainen AL, Ruokonen A, Surcel HM, Bloigu A, Vääräsmäki M, Järvelin MR, Moilanen I, et al. The impact of gestational thyroid hormone concentrations on ADHD symptoms of the child. Journal of Clinical Endocrinology and Metabolism 2014 99. E1-E8. (https://doi.org/10.1210/jc.2013-2943)
Korevaar TIM, Muetzel R, Medici M, Chaker L, Jaddoe VW, de Rijke YB, Steegers EA, Visser TJ, White T, Tiemeier H, et al. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a populationbased prospective cohort study. Lancet Diabetes and Endocrinology 2016 4 35-43. (https://doi.org/10.1016/S2213-8587(15)00327-7)
Fetene DM, Betts KS & Alati R. Mechanisms in endocrinology maternal thyroid dysfunction during pregnancy and behavioural and psychiatric disorders of children: a systematic review. European Journal of Endocrinology 2017 177. R261-R273. (https://doi.org/10.1530/EJE-16-0860)
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J & Zoeller RT. Executive summary to EDC-2: the Endocrine Society’s second Scientific Statement on endocrine-disrupting chemicals. Endocrine Reviews 2015 36 593-602. (https://doi.org/10.1210/er.2015-1093)
Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid 1998 8 827-856. (https://doi.org/10.1089/thy.1998.8.827)
Zoeller RT & Crofton KM. Thyroid hormone action in fetal brain development and potential for disruption by environmental chemicals. Neurotoxicology 2000 21 935-945.
Crofton KM. Thyroid disrupting chemicals: mechanisms and mixtures. International Journal of Andrology 2008 31 209-222. (https://doi.org/10.1111/j.1365-2605.2007.00857.x)
Boas M, Main KM & Feldt-Rasmussen U. Environmental chemicals and thyroid function: an update. Current Opinion in Endocrinology, Diabetes and Obesity 2009 16 385-391. (https://doi.org/10.1097/MED.0b013e3283305af7)
Dohán, O, Portulano C, Basquin C, Reyna-Neyra A, Amzel LM & Carrasco N. The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. PNAS 2007 104 20250-20255.
Tonacchera M, Pinchera A, Dimida A, Ferrarini E, Agretti P, Vitti P, Santini F, Crump K & Gibbs J. Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter. Thyroid 2004 14 1012-1019. (https://doi.org/10.1089/thy.2004.14.1012)
Demeneix B. Losing Our Minds: How Environmental Pollution Impairs Human Intelligence and Mental Health. Oxford, UK: Oxford University Press, 2014. (https://doi.org/10.1093/acprof:oso/9780199917518.001.0001)
Suh M, Abraham L, Hixon JG & Proctor DM. The effects of perchlorate, nitrate, and thiocyanate on free thyroxine for potentially sensitive subpopulations. The 2001-2002 and 2007-2008. National Health and Nutrition Examination Surveys. Journal of Exposure Science and Environmental Epidemiology 2014 24 579-587. (https://doi.org/10.1038/jes.2013.67)
Blount BC, Valentin-Blasini L, Osterloh JD, Mauldin JP & Pirkle JL. Perchlorate exposure of the US population, 2001-2002. Journal of Exposure Science and Environmental Epidemiology 2007 17 400-407. (https://doi.org/10.1038/sj.jes.7500535)
Taylor PN, Okosieme OE, Murphy R, Hales C, Chiusano E, Maina A, Joomun M, Bestwick JP, Smyth P, Paradice R, et al. Maternal perchlorate levels in women with borderline thyroid function during pregnancy and the cognitive development of their offspring: data from the controlled antenatal thyroid study. Journal of Clinical Endocrinology and Metabolism 2014 99 4291-4298. (https://doi.org/10.1210/jc.2014-1901)
Steinmaus C, Pearl M, Kharrazi M, Blount BC, Miller MD, Pearce EN, Valentin-Blasini L, DeLorenze G, Hoofnagle AN & Liaw J. Thyroid hormones and moderate exposure to perchlorate during pregnancy in women in southern California. Environmental Health Perspectives 2016 124 861-867. (https://doi.org/10.1289/ehp.1409614)
Rayman MP & Bath SC. The new emergence of iodine deficiency in the UK: consequences for child neurodevelopment. Annals of Clinical Biochemistry 2015 52 705-708. (https://doi.org/10.1177/0004563215597249)
Andersen SL, Laurberg P, Wu CS& Olsen J. Attention deficit hyperactivity disorder and autism spectrum disorder in children born to mothers with thyroid dysfunction: a Danish nationwide cohort study. British Journal of Obstetrics and Gynaecology 2014 121 1365-1374. (https://doi.org/10.1111/1471-0528.12681)
Brucker-Davis F, Ganier-Chauliac F, Gal J, Panaïa-Ferrari P, Pacini P, Fénichel P & Hiéronimus S. Neurotoxicant exposure during pregnancy is a confounder for assessment of iodine supplementation on neurodevelopment outcome. Neurotoxicology and Teratology 2015 51 45-51. (https://doi.org/10.1016/j.ntt.2015.07.009)
Provencher G, Bérubé R, Dumas P, Bienvenu JF, Gaudreau E, Bélanger P & Ayotte P. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2014 1348 97-104. (https://doi.org/10.1016/j.chroma.2014.04.072)
Tato T, Salgueiro-González N, León VM, González S & Beiras R. Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonylphenol in coastal waters using early life stages of marine organisms (Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Acartia clausi). Environmental Pollution 2017 232 173-182. (https://doi.org/10.1016/j.envpol.2017.09.031)
Dodds EC & Lawson W. Synthetic estrogenic agents without the phenanthrene nucleus. Nature 1936 137 996-996. (https://doi.org/10.1038/137996a0)
EFSA. Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal 2015 13 3978.
Andra SS, Charisiadis P, Arora M, Van Vliet-Ostaptchouk JV & Makris KC. Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A. Environment International 2015 85 352-379. (https://doi.org/10.1016/j.envint.2015.09.011)
Lee J, Choi K, Park J, Moon HB, Choi G, Lee JJ, Suh E, Kim HJ, Eun SH, Kim GH, et al. Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical cord serum in a birth panel of mother-neonate pairs. Science of the Total Environment 2017 626 1494-1501. (https://doi.org/10.1016/j.scitotenv.2017.10.042)
Cantonwine DE, Meeker JD, Ferguson KK, Mukherjee B, Hauser R & McElrath TF. Urinary concentrations of bisphenol A and phthalate metabolites measured during pregnancy and risk of preeclampsia. Environmental Health Perspectives 2016 124 1651-1655.
Troisi J, Mikelson C, Richards S, Symes S, Adair D, Zullo F & Guida M. Placental concentrations of bisphenol A and birth weight from births in the Southeastern U.S. Placenta 2014 35 947-952. (https://doi.org/10.1016/j.placenta.2014.08.091)
Vela-Soria F, Jiménez-Díaz I, Rodríguez-Gómez R, Zafra-Gómez A, Ballesteros O, Fernández MF, Oleab N & Navalón A. A multiclass method for endocrine disrupting chemical residue analysis in human placental tissue samples by UHPLC-MS/MS. Analytical Methods 2011 3 2073. (https://doi.org/10.1039/c1ay05162h)
Mendonca K, Hauser R, Calafat AM, Arbuckle TE & Duty SM. Bisphenol A concentrations in maternal breast milk and infant urine. International Archives of Occupational and Environmental Health 2014 87 13-20. (https://doi.org/10.1007/s00420-012-0834-9)
Deceuninck Y, Bichon E, Marchand P, Boquien CY, Legrand A, Boscher C, Antignac JP & Le Bizec B. Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2015 407 2485-2497. (https://doi.org/10.1007/s00216-015-8469-9)
Ye X, Wong LY, Kramer J, Zhou X, Jia T & Calafat AM. Urinary concentrations of bisphenol A and three other bisphenols in convenience samples of U.S. adults during 2000-2014. Environmental Science and Technology 2015 49 11834-11839. (https://doi.org/10.1021/acs.est.5b02135)
Yang Y, Guan J, Yin J, Shao B & Li H. Urinary levels of bisphenol analogues in residents living near a manufacturing plant in south China. Chemosphere 2014 112 481-486. (https://doi.org/10.1016/j.chemosphere.2014.05.004)
Yang YJ, Li ZL, Zhang J, Yang Y & Shao B. Simultaneous determination of bisphenol A, bisphenol AF, tetrachlorobisphenol A, and tetrabromobisphenol A concentrations in water using on-line solid-phase extraction with ultrahigh-pressure liquid chromatography tandem mass spectrometry. International Journal of Environmental Analytical Chemistry 2014 94 16-27. (https://doi.org/10.1080/03067319.2013.853756)
Thayer KA, Taylor KW, Garantziotis S, Schurman SH, Kissling GE, Hunt D, Herbert B, Church R, Jankowich R, Churchwell MI, et al. Bisphenol a, bisphenol s, and 4-hydro xyphenyl 4-isopro oxyphenyl sulfone (bpsip) in urine and blood of cashiers. Environmental Health Perspectives 2016 124 437-444. (https://doi.org/10.1289/ehp.1409427)
Zhang Y-F, Ren XM, Li YY, Yao XF, Li CH, Qin ZF & Guo LH. Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo. Environmental Pollution 2017 [epub]. (https://doi.org/10.1016/j.envpol.2017.11.027)
Lee S, Kim C, Youn H & Choi K. Thyroid hormone disrupting potentials of bisphenol A and its analogues -in vitro comparison study employing rat pituitary (GH3) and thyroid follicular (FRTL-5) cells. Toxicology in Vitro 2017 40 297-304. (https://doi.org/10.1016/j.tiv.2017.02.004)
Le Fol V, Aït-Aïssa S, Sonavane M, Porcher JM, Balaguer P, Cravedi JP, Zalko D & Brion F. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays. Ecotoxicology and Environmental Safety 2017 142 150-156. (https://doi.org/10.1016/j.ecoenv.2017.04.009)
MacKay H & Abizaid A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Hormones and Behavior 2017 [epub]. (https://doi.org/10.1016/j.yhbeh.2017.11.001)
Okada H, Tokunaga T, Liu X, Takayanagi S, Matsushima A & Shimohigashi Y. Direct evidence revealing structural elements essential for the high binding ability of bisphenol a to human estrogen-related receptor-gamma. Environmental Health Perspectives 2008 116 32-38. (https://doi.org/10.1289/ehp.10587)
Matsushima A, Kakuta Y, Teramoto T, Koshiba T, Liu X, Okada H, Tokunaga T, Kawabata S, Kimura M & Shimohigashi Y. Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERRγ. Journal of Biochemistry 2007 142 517-524. (https://doi.org/10.1093/jb/mvm158)
Xu LC, Sun H, Chen JF, Bian Q, Qian J, Song L & Wang XR. Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicology 2005 216 197-203. (https://doi.org/10.1016/j.tox.2005.08.006)
Teng C, Goodwin B, Shockley K, Xia M, Huang R, Norris J, Merrick BA, Jetten AM, Austin CP & Tice RR. Bisphenol A affects androgen receptor function via multiple mechanisms. Chemico-Biological Interactions 2013 203 556-564. (https://doi.org/10.1016/j.cbi.2013.03.013)
Zoeller RT, Bansal R & Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 2005 146 607-612. (https://doi.org/10.1210/en.2004-1018)
Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H & Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. Journal of Clinical Endocrinology and Metabolism 2002 87 5185-5190. (https://doi.org/10.1210/jc.2002-020209)
Alonso-Magdalena P, Ropero AB, Soriano S, García-Arévalo M, Ripoll C, Fuentes E, Quesada I & Nadal Á. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Molecular and Cellular Endocrinology 2012 355 201-207. (https://doi.org/10.1016/j.mce.2011.12.012)
Kitamura S, Jinno N, Ohta S, Kuroki H & Fujimoto N. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A. Biochemical and Biophysical Research Communications 2002 293 554-559. (https://doi.org/10.1016/S0006-291X(02)00262-0)
Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y & Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Human Reproduction 2002 17 2839-2841. (https://doi.org/10.1093/humrep/17.11.2839)
Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N, Sugihara K, Yoshihara S, Fujimoto N, Watanabe H & Ohta S. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicological Sciences 2005 84 249-259. (https://doi.org/10.1093/toxsci/kfi074)
Freitas J, Cano P, Craig-Veit C, Goodson ML, Furlow JD & Murk AJ. Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicology in Vitro 2011 25 257-266. (https://doi.org/10.1016/j.tiv.2010.08.013)
Hofmann PJ, Schomburg L & Köhrle J. Interference of endocrine disrupters with thyroid hormone receptor-dependent transactivation. Toxicological Sciences 2009 110 125-137. (https://doi.org/10.1093/toxsci/kfp086)
Goldinger DM, Demierre AL, Zoller O, Rupp H, Reinhard H, Magnin R, Becker TW & Bourqui-Pittet M. Endocrine activity of alternatives to BPA found in thermal paper in Switzerland. Regulatory Toxicology and Pharmacology 2015 71 453-462. (https://doi.org/10.1016/j.yrtph.2015.01.002)
Geens T, Dirtu AC, Dirinck E, Malarvannan G, Van Gaal L, Jorens PG & Covaci A. Daily intake of bisphenol A and triclosan and their association with anthropometric data, thyroid hormones and weight loss in overweight and obese individuals. Environment International 2015 76 98-105. (https://doi.org/10.1016/j.envint.2014.12.003)
Sriphrapradang C, Chailurkit LO, Aekplakorn W & Ongphiphadhanakul B. Association between bisphenol A and abnormal free thyroxine level in men. Endocrine 2013 44 441-447. (https://doi.org/10.1007/s12020-013-9889-y)
Wang F, Hua J, Chen M, Xia Y, Zhang Q, Zhao R, Zhou W, Zhang Z & Wang B. High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occupational and Environmental Medicine 2012 69 679-684. (https://doi.org/10.1136/oemed-2011-100529)
Meeker JD & Ferguson KK. Relationship between urinary phthalate and bisphenol a concentrations and serum thyroid measures in U.S. adults and adolescents from the national health and nutrition examination survey (NHANES) 2007-2008. Environmental Health Perspectives 2011 119 1396-1402. (https://doi.org/10.1289/ehp.1103582)
Aung MT, Johns LE, Ferguson KK, Mukherjee B, McElrath TF & Meeker JD. Thyroid hormone parameters during pregnancy in relation to urinary bisphenol A concentrations: a repeated measures study. Environment International 2017 104 33-40. (https://doi.org/10.1016/j.envint.2017.04.001)
Romano ME, Webster GM, Vuong AM, Thomas Zoeller R, Chen A, Hoofnagle AN, Calafat AM, Karagas MR, Yolton K, Lanphear BP, et al. Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: the HOME Study. Environmental Research 2015 138 453-460. (https://doi.org/10.1016/j.envres.2015.03.003)
Chevrier J, Gunier RB, Bradman A, Holland NT, Calafat AM, Eskenazi B & Harley KG. Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environmental Health Perspectives 2013 121 138-144.
Minatoya M, Sasaki S, Araki A, Miyashita C, Itoh S, Yamamoto J, Matsumura T, Mitsui T, Moriya K, Cho K, et al. Cord blood bisphenol A levels and reproductive and thyroid hormone levels of neonates. Epidemiology 2017 28. S3-S9. (https://doi.org/10.1097/EDE.0000000000000716)
Andrianou XD, Gängler S, Piciu A, Charisiadis P, Zira C, Aristidou K, Piciu D, Hauser R & Makris KC. Human exposures to bisphenol A, bisphenol F and chlorinated bisphenol a derivatives and thyroid function. PLoS ONE 2016 11 e0155237. (https://doi.org/10.1371/journal.pone.0155237)
Casas M, Forns J, Martínez D, Avella-García C, Valvi D, Ballesteros-Gómez A, Luque N, Rubio S, Julvez J, Sunyer J, et al. Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA-Sabadell cohort. Environmental Research 2015 142 671-679. (https://doi.org/10.1016/j.envres.2015.07.024)
Roen EL, Wang Y, Calafat AM, Wang S, Margolis A, Herbstman J, Hoepner LA, Rauh V & Perera FP. Bisphenol A exposure and behavioral problems among inner city children at 7-9 years of age. Environmental Research 2015 142 739-745. (https://doi.org/10.1016/j.envres.2015.01.014)
Harley KG, Gunier RB, Kogut K, Johnson C, Bradman A, Calafat AM & Eskenazi B. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environmental Research 2013 126 43-50. (https://doi.org/10.1016/j.envres.2013.06.004)
Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, Dietrich KN & Lanphear BP. Impact of early-life bisphenol a exposure on behavior and executive function in children. Pediatrics 2011 128 873-882. (https://doi.org/10.1542/peds.2011-1335)
Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM & Lanphear BP. Prenatal bisphenol A exposure and early childhood behavior. Environmental Health Perspectives 2009 117 1945-1952. (https://doi.org/10.1289/ehp.0900979)
Evans SF, Kobrosly RW, Barrett ES, Thurston SW, Calafat AM, Weiss B, Stahlhut R, Yolton K & Swan SH. Prenatal bisphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology 2014 45 91-99. (https://doi.org/10.1016/j.neuro.2014.10.003)
Tewar S, Auinger P, Braun JM, Lanphear B, Yolton K, Epstein JN, Ehrlich S & Froehlich TE. Association of bisphenol A exposure and attention-deficit/hyperactivity disorder in a national sample of U.S. children. Environmental Research 2016 150 112-118. (https://doi.org/10.1016/j.envres.2016.05.040)
Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V & Wang S. Prenatal bisphenol a exposure and child behavior in an innerity cohort. Environmental Health Perspectives 2012 120 1190-1194. (https://doi.org/10.1289/ehp.1104492)
Arbuckle TE, Davis K, Boylan K, Fisher M & Fu J. Bisphenol A, phthalates and lead and learning and behavioral problems in Canadian children 6-11 years of age: CHMS 2007-2009. Neurotoxicology 2016 54 89-98. (https://doi.org/10.1016/j.neuro.2016.03.014)
Diaz Weinstein S, Villafane JJ, Juliano N & Bowman RE. Adolescent exposure to Bisphenol-A increases anxiety and sucrose preference but impairs spatial memory in rats independent of sex. Brain Research 2013 1529 56-65. (https://doi.org/10.1016/j.brainres.2013.07.018)
Bowman RE, Luine V, Diaz Weinstein S, Khandaker H, DeWolf S & Frankfurt M. Bisphenol-A exposure during adolescence leads to enduring alterations in cognition and dendritic spine density in adult male and female rats. Hormones and Behavior 2015 69 89-97. (https://doi.org/10.1016/j.yhbeh.2014.12.007)
Xu X, Liu Y, Sadamatsu M, Tsutsumi S, Akaike M, Ushijima H & Kato N. Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neuroscience Research 2007 58 149-155. (https://doi.org/10.1016/j.neures.2007.02.011)
Mizuo K, Narita M, Miyagawa K, Narita M, Okuno E & Suzuki T. Prenatal and neonatal exposure to bisphenol-A affects the morphine-induced rewarding effect and hyperlocomotion in mice. Neuroscience Letters 2004 356 95-98. (https://doi.org/10.1016/j.neulet.2003.11.027)
Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP & Champagne FA. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. PNAS 2013 110 9956-9961. (https://doi.org/10.1073/pnas.1214056110)
Adriani W, Della Seta D, Dessi-Fulgheri F, Farabollini F & Laviola G. Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to D-amphetamine in rats perinatally exposed to Bisphenol A. Environmental Health Perspectives 2003 111 395-401. (https://doi.org/10.1289/ehp.5856)
Kumar D & Kumar Thakur M. Perinatal exposure to bisphenol-A impairs spatial memory through upregulation of neurexin1 and neuroligin3 expression in male mouse brain. PLoS ONE 2014 9 e110482.
Jašarević E, Williams SA, Vandas GM, Ellersieck MR, Liao C, Kannan K, Roberts RM, Geary DC & Rosenfeld CS. Sex and dosedependent effects of developmental exposure to bisphenol A on anxiety and spatial learning in deer mice (Peromyscus maniculatus bairdii) offspring. Hormones and Behavior 2013 63 180-189. (https://doi.org/10.1016/j.yhbeh.2012.09.009)
Kuwahara R, Kawaguchi S, Kohara Y, Cui H & Yamashita K. Perinatal exposure to low-dose bisphenol A impairs spatial learning and memory in male rats. Journal of Pharmacological Sciences 2013 123 132-139. (https://doi.org/10.1254/jphs.13093FP)
Xu X, Tian D, Hong X, Chen L & Xie L. Sex-specific influence of exposure to bisphenol-A between adolescence and young adulthood on mouse behaviors. Neuropharmacology 2011 61 565-573. (https://doi.org/10.1016/j.neuropharm.2011.04.027)
Poimenova A, Markaki E, Rahiotis C & Kitraki E. Corticosteroneregulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A. Neuroscience 2010 167 741-749. (https://doi.org/10.1016/j.neuroscience.2010.02.051)
Tian Y-H, Baek J-H, Lee S-Y & Jang C-G. Prenatal and postnatal exposure to bisphenol a induces anxiolytic behaviors and cognitive deficits in mice. Synapse 2010 64 432-439. (https://doi.org/10.1002/syn.20746)
Wolstenholme JT, Rissman EF & Connelly JJ. The role of bisphenol A in shaping the brain, epigenome and behavior. Hormones and Behavior 2011 59 296-305. (https://doi.org/10.1016/j.yhbeh.2010.10.001)
Jorgensen EM, Alderman MH & Taylor HS. Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure. FASEB Journal 2016 30 3194-3201. (https://doi.org/10.1096/fj.201500089R)
Kyono Y, Subramani A, Ramadoss P, Hollenberg AN, Bonett RM & Denver RJ. Liganded thyroid hormone receptors transactivate the DNA methyltransferase 3a gene in mouse neuronal cells. Endocrinology 2016 157 3647-3657. (https://doi.org/10.1210/en.2015-1529)
Kyono Y, Sachs LM, Bilesimo P, Wen L & Denver RJ. Developmental and thyroid hormone regulation of the DNA methyltransferase 3a gene in xenopus tadpoles. Endocrinology 2016 157 4961-4972. (https://doi.org/10.1210/en.2016-1465)
Government of Canada. Risk Management Scope for Phenol, 4,4’-(1-methylethylidene) bis[2,6-dibromo(Tetrabromobisphenol A). Chemical Abstract Service Registry Number (CAS RN): 79-94-7. Ottawa, Ontario, Canada: Environment Canada, 2012. (available at: http://www.ec.gc.ca/ese-ees/3BC8852B-124A-4D0D-8376-3A62D41530F8/TBBPA_RM%20Scope_EN.pdf)
EFSA. Scientific Opinion on Tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA Journal 2011 9 2477. (available at: https://www.efsa.europa.eu/en/efsajournal/pub/2477)
Van der Ven LTM, Van de Kuil T, Verhoef A, Verwer CM, Lilienthal H, Leonards PE, Schauer UM, Cantón RF, Litens S, De Jong FH, et al. Endocrine effects of tetrabromobisphenol-A (TBBPA) in Wistar rats as tested in a one-generation reproduction study and a subacute toxicity study. Toxicology 2008 245 76-89. (https://doi.org/10.1016/j.tox.2007.12.009)
Zieminska E, Ruszczynska A & Lazarewicz JW. Tetrabromobisphenol A disturbs zinc homeostasis in cultured cerebellar granule cells: a dual role in neurotoxicity. Food and Chemical Toxicology 2017 109 363-375. (https://doi.org/10.1016/j.fct.2017.09.021)
Zieminska E, Stafiej A, Toczylowska B, Albrecht J & Lazarewicz JW. Role of ryanodine and NMDA receptors in tetrabromobisphenol A-induced calcium imbalance and cytotoxicity in primary cultures of rat cerebellar granule cells. Neurotoxicity Research 2015 28 195-208. (https://doi.org/10.1007/s12640-015-9546-8)
Zieminska E, Stafiej A, Toczylowska B & Lazarewicz JW. Bastadin 12 and ryanodine reveal similarities between thapsigargin-and tetrabromobisphenol A-induced intracellular Ca(2+) release in cultured cerebellar granule cells. Journal of Physiology and Pharmacology 2014 65 679-686.
Zieminska E, Lenart J, Diamandakis D & Lazarewicz JW. The role of Ca2+ imbalance in the induction of acute oxidative stress and cytotoxicity in cultured rat cerebellar granule cells challenged with tetrabromobisphenol A. Neurochemical Research 2016 42 1-11. (https://doi.org/10.1007/s11064-016-2075-x)
Hendriks HS, Van kleef RGDM, Van den berg M & Westerink RHS. Multiple novel modes of action involved in the in vitro neurotoxic effects of tetrabromobisphenol-A. Toxicological Sciences 2012 128 235-246. (https://doi.org/10.1093/toxsci/kfs136)
Cope RB, Kacew S & Dourson M. A reproductive, developmental and neurobehavioral study following oral exposure of tetrabromobisphenol A on Sprague-Dawley rats. Toxicology 2015 329 49-59. (https://doi.org/10.1016/j.tox.2014.12.013)
Colnot T, Kacew S & Dekant W. Mammalian toxicology and human exposures to the flame retardant 2,2′,6,6′-tetrabromo-4,4′-isopropylidenediphenol (TBBPA): Implications for risk assessment. Archives of Toxicology 2014 88 553-573.
Viberg H & Eriksson P. Differences in neonatal neurotoxicity of brominated flame retardants, PBDE 99 and TBBPA, in mice. Toxicology 2011 289 59-65. (https://doi.org/10.1016/j.tox.2011.07.010)
Decherf S, Seugnet I, Fini JB, Clerget-Froidevaux MS & Demeneix BA. Disruption of thyroid hormone-dependent hypothalamic set-points by environmental contaminants. Molecular and Cellular Endocrinology 2010 323 172-182. (https://doi.org/10.1016/j.mce.2010.04.010)
Chen J, Tanguay RL, Xiao Y, Haggard DE, Ge X, Jia Y, Zheng Y, Dong Q, Huang C & Lin K. TBBPA exposure during a sensitive developmental window produces neurobehavioral changes in larval zebrafish. Environmental Pollution 2016 216 53-63. (https://doi.org/10.1016/j.envpol.2016.05.059)
Nakajima A, Saigusa D, Tetsu N, Yamakuni T, Tomioka Y & Hishinuma T. Neurobehavioral effects of tetrabromobisphenol A, a brominated flame retardant, in mice. Toxicology Letters 2009 189 78-83. (https://doi.org/10.1016/j.toxlet.2009.05.003)
Lilienthal H, Verwer CM, van der Ven LTM, Piersma AH & Vos JG. Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats: neurobehavioral effects in offspring from a one-generation reproduction study. Toxicology 2008 246 45-54. (https://doi.org/10.1016/j.tox.2008.01.007)
Ng L, Kelley MW & Forrest D. Making sense with thyroid hormonethe role of T 3 in auditory development. Nature Reviews Endocrinology 2013 9 296-307. (https://doi.org/10.1038/nrendo.2013.58)
National Toxicology Program. NTP technical report on the toxicology studies of tetrabromobisphenol A (CAS NO. 79-94-7) in F344/NTac rats and B6C3F1/N mice and toxicology and carcinogenesis study of tetrabromobisphenol A in Wistar Han (Crl:WI(Han)) rats and B6C3F1/N mice (gavage studies). Research Triangle Park, NC: USA: National Toxicology Program, 2014. (available at: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr587_508.pdf)
Lai DY, Kacew S & Dekant W. Tetrabromobisphenol A (TBBPA): possible modes of action of toxicity and carcinogenicity in rodents. Food and Chemical Toxicology 2015 80 206-214. (https://doi.org/10.1016/j.fct.2015.03.023)
Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MH, Andersson PL, Legler J & Brouwer A. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicological Sciences 2006 92 157-173. (https://doi.org/10.1093/toxsci/kfj187)
Lévy-Bimbot M, Major G, Courilleau D, Blondeau JP & Lévi Y. Tetrabromobisphenol-A disrupts thyroid hormone receptor alpha function in vitro: use of fluorescence polarization to assay corepressor and coactivator peptide binding. Chemosphere 2012 87 782-788. (https://doi.org/10.1016/j.chemosphere.2011.12.080)
Kitamura S, Kato T, Iida M, Jinno N, Suzuki T, Ohta S, Fujimoto N, Hanada H, Kashiwagi K & Kashiwagi A. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life Science 2005 76 1589-1601. (https://doi.org/10.1016/j.lfs.2004.08.030)
Zhang YF, Xu W, Lou QQ, Li YY, Zhao YX, Wei WJ, Qin ZF, Wang HL & Li JZ. Tetrabromobisphenol a disrupts vertebrate development via thyroid hormone signaling pathway in a developmental stagedependent manner. Environmental Science and Technology 2014 48 8227-8234. (https://doi.org/10.1021/es502366g)
Wang Y, Li Y, Qin Z & Wei W. Re-evaluation of thyroid hormone signaling antagonism of tetrabromobisphenol A for validating the T3-induced Xenopus metamorphosis assay. Journal of Environmental Sciences 2017 52 325-332. (https://doi.org/10.1016/j.jes.2016.09.021)
Fini JB, Le Mével S, Palmier K, Darras VM, Punzon I, Richardson SJ, Clerget-Froidevaux MS & Demeneix BA. Thyroid hormone signaling in the Xenopus laevis embryo is functional and susceptible to endocrine disruption. Endocrinology 2012 153 5068-5081. (https://doi.org/10.1210/en.2012-1463)
Mengeling BJ, Wei Y, Dobrawa LN, Streekstra M, Louisse J, Singh V4, Singh L, Lein PJ, Wulff H, Murk AJ & Furlow JD. A multi-tiered, in vivo, quantitative assay suite for environmental disruptors of thyroid hormone signaling. Aquatic Toxicology 2017 190 1-10. (https://doi.org/10.1016/j.aquatox.2017.06.019)
Borghoff SJ, Wikoff D, Harvey S & Haws L. Dose-and timedependent changes in tissue levels of tetrabromobisphenol A (TBBPA) and its sulfate and glucuronide conjugates following repeated administration to female Wistar Han Rats. Toxicology Reports 2016 3 190-201. (https://doi.org/10.1016/j.toxrep.2016.01.007)
Yueh M-F & Tukey RH. Triclosan: a widespread environmental toxicant with many biological effects. Annual Review of Pharmacology and Toxicology 2016 56 251-272. (https://doi.org/10.1146/annurevpharmtox-010715-103417)
Calafat AM, Ye X, Wong LY, Reidy JA & Needham LL. Urinary concentrations of triclosan in the U.S. population: 2003-2004. Environmental Health Perspectives 2008 116 303-307. (https://doi.org/10.1289/ehp.10768)
Chapin RE, Adams J, Boekelheide K, Gray LE Jr, Hayward SW, Lees PS, McIntyre BS, Portier KM, Schnorr TM, Selevan SG, et al. NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Research Part B: Developmental and Reproductive Toxicology 2008 83 157-395. (https://doi.org/10.1002/bdrb.20147)
Dayan AD. Risk assessment of triclosan (Irgasan) in human breast milk. Food and Chemical Toxicology 2007 45 125-129. (https://doi.org/10.1016/j.fct.2006.08.009)
Arbuckle TE, Marro L, Davis K, Fisher M, Ayotte P, Bélanger P, Dumas P, LeBlanc A, Bérubé R, Gaudreau É, et al. Exposure to free and conjugated forms of bisphenol a and triclosan among pregnant women in the MIREC cohort. Environmental Health Perspectives 2015 123 277-284. (https://doi.org/10.1289/ehp.1408187)
Philippat C, Wolff MS, Calafat AM, Ye X, Bausell R, Meadows M, Stone J, Slama R & Engel SM. Prenatal exposure to environmental phenols: concentrations in amniotic fluid and variability in urinary concentrations during pregnancy. Environmental Health Perspectives 2013 121 1225-1231. (https://doi.org/10.1289/ehp.1206335)
EU Commission. COMMISSION REGULATION (EU) No 358/2014 of 9. April 2014 amending Annexes II and V to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on cosmetic products. Official Journal of the European Union, 2014. (available at: http://data.europa.eu/eli/reg/2014/358/oj)
Chen L, Wang Z, Jing Z, Wang Z, Cao S & Yu T. Accumulation and risk of triclosan in surface sediments near the outfalls of municipal wastewater treatment plants. Bulletin of Environmental Contamination and Toxicology 2015 95 525-529. (https://doi.org/10.1007/s00128-015-1630-5)
Díaz-Cruz MS & Barceló D. Personal Care Products in the Aquatic Environment. The Handbook of Environmental Chemistry, series volume 36. New York, NY, USA: Springer International Publishing, 2015. (https://doi.org/10.1007/978-3-319-18809-6)
Axelstad M, Boberg J, Vinggaard AM, Christiansen S & Hass U. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring. Food and Chemical Toxicology 2013 59 534-540. (https://doi.org/10.1016/j.fct.2013.06.050)
Paul KB, Hedge JM, Bansal R, Zoeller RT, Peter R, DeVito MJ & Crofton KM. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: a dynamic and kinetic evaluation of a putative mode-of-action. Toxicology 2012 300 31-45. (https://doi.org/10.1016/j.tox.2012.05.023)
Rodríguez PE & Sanchez MS. Maternal exposure to triclosan impairs thyroid homeostasis and female pubertal development in Wistar rat offspring. Journal of Toxicology and Environmental Health, Part A 2010 73 1678-1688.
Crofton KM, Paul KB, DeVito MJ & Hedge JM. Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environmental Toxicology and Pharmacology 2007 24 194-197. (https://doi.org/10.1016/j.etap.2007.04.008)
Paul KB, Thompson JT, Simmons SO, Vanden Heuvel JP & Crofton KM. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors. Toxicology In Vitro 2013 27 2049-2060. (https://doi.org/10.1016/j.tiv.2013.07.008)
Zorrilla LM, Gibson EK, Jeffay SC, Crofton KM, Setzer WR, Cooper RL & Stoker TE. The effects of triclosan on puberty and thyroid hormones in male wistar rats. Toxicological Sciences 2009 107 56-64. (https://doi.org/10.1093/toxsci/kfn225)
Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ, Gunderson MP, Van Aggelen G & Helbing CC. Corrigendum to ’The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development’. Aquatic Toxicology 2007 83 84. (https://doi.org/10.1016/j.aquatox.2006.08.010)
Fort DJ, Mathis MB, Hanson W, Fort CE, Navarro LT, Peter R, Büche C, Unger S, Pawlowski S & Plautz JR. Triclosan and thyroidmediated metamorphosis in anurans: differentiating growth effects from thyroid-driven metamorphosis in Xenopus laevis. Toxicological Sciences 2011 121 292-302. (https://doi.org/10.1093/toxsci/kfr069)
Regnault C, Willison J, Veyrenc S, Airieau A, Méresse P, Fortier M, Fournier M, Brousseau P, Raveton M & Reynaud S. Metabolic and immune impairments induced by the endocrine disruptors benzo[a] pyrene and triclosan in Xenopus tropicalis. Chemosphere 2016 155 519-527. (https://doi.org/10.1016/j.chemosphere.2016.04.047)
Lan Z, Kim TH, Bi KS, Chen XH & Kim HS. Triclosan exhibits a tendency to accumulate in the epididymis and shows sperm toxicity in male sprague-dawley rats. Environmental Toxicology 2015 30 83-91. (https://doi.org/10.1002/tox.21897)
Stoker TE, Gibson EK & Zorrilla LM. Triclosan exposure modulates estrogen-dependent responses in the female wistar rat. Toxicological Sciences 2010 117 45-53. (https://doi.org/10.1093/toxsci/kfq180)
Huang H, Du G, Zhang W, Hu J, Wu D, Song L, Xia Y & Wang X. The in vitro estrogenic activities of triclosan and triclocarban. Journal of Applied Toxicology 2014 34 1060-1067. (https://doi.org/10.1002/jat.3012)
Henry ND & Fair PA. Comparison of in vitro cytotoxicity, estrogenicity and anti-estrogenicity of triclosan, perfluorooctane sulfonate and perfluorooctanoic acid. Journal of Applied Toxicology 2013 33 265-272. (https://doi.org/10.1002/jat.1736)
Gee RH, Charles A, Taylor N & Darbre PD. Oestrogenic and androgenic activity of triclosan in breast cancer cells. Journal of Applied Toxicology 2008 28 78-91. (https://doi.org/10.1002/jat.1316)
Kim JY, Yi BR, Go RE, Hwang KA, Nam KH & Choi KC. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle-and apoptosis-related genes via an estrogen receptordependent pathway. Environmental Toxicology and Pharmacology 2014 37 1264-1274. (https://doi.org/10.1016/j.etap.2014.04.013)
Lee HR, Hwang KA, Nam KH, Kim HC & Choi KC. Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chemical Research in Toxicology 2014 27 834-842. (https://doi.org/10.1021/tx5000156)
Louis GW, Hallinger DR & Stoker TE. The effect of triclosan on the uterotrophic response to extended doses of ethinyl estradiol in the weanling rat. Reproductive Toxicology 2013 36 71-77. (https://doi.org/10.1016/j.reprotox.2012.12.001)
Pollock T, Greville LJ, Tang B & deCatanzaro D. Triclosan elevates estradiol levels in serum and tissues of cycling and peri-implantation female mice. Reproductive Toxicology 2016 65 394-401. (https://doi.org/10.1016/j.reprotox.2016.09.004)
James MO, Li W, Summerlot DP, Rowland-Faux L & Wood CE. Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environment International 2010 36 942-949. (https://doi.org/10.1016/j.envint.2009.02.004)
Wang LQ, Falany CN & James MO. Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metabolism and Disposition 2004 32 1162-1169. (https://doi.org/10.1124/dmd.104.000273)
Aker AM, Watkins DJ, Johns LE, Ferguson KK, Soldin OP, Anzalota Del Toro LV, Alshawabkeh AN, Cordero JF & Meeker JD. Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women. Environmental Research 2016 151 30-37. (https://doi.org/10.1016/j.envres.2016.07.002)
Allmyr M, Panagiotidis G, Sparve E, Diczfalusy U & Sandborgh-Englund G. Human exposure to triclosan via toothpaste does not change cyp3a4 activity or plasma concentrations of thyroid hormones. Basic and Clinical Pharmacology and Toxicology 2009 105 339-344. (https://doi.org/10.1111/j.1742-7843.2009.00455.x)
Cullinan MP, Palmer JE, Carle AD, West MJ & Seymour GJ. Long term use of triclosan toothpaste and thyroid function. Science of the Total Environment 2012 416 75-79. (https://doi.org/10.1016/j.scitotenv.2011.11.063)
Koeppe ES, Ferguson KK, Colacino JA & Meeker JD. Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007-2008. Science of the Total Environment 2013 445-446 299-305.
Poole AC, Pischel L, Ley C, Suh G, Goodrich JK, Haggerty TD, Ley RE & Parsonnet J. Crossover control study of the effect of personal care products containing triclosan on the microbiome. mSphere 2016 1 e00056-15. (https://doi.org/10.1128/mSphere.00056-15)
Wang X, Ouyang F, Feng L, Wang X, Liu Z & Zhang J. Maternal urinary triclosan concentration in relation to maternal and neonatal thyroid hormone levels: a prospective study. Environmental Health Perspectives 2013 125 67017. (https://doi.org/10.1289/EHP500)
Lassen TH, Frederiksen H, Kyhl HB, Swan SH, Main KM, Andersson AM, Lind DV, Husby S, Wohlfahrt-Veje C, Skakkebæk NE, et al. Prenatal triclosan exposure and anthropometric measures including anogenital distance in Danish infants. Environmental Health Perspectives 2016 124 1261-1268. (https://doi.org/10.1289/ehp.1409637)
Johannes J., Jayarama-Naidu R, Meyer F, Wirth EK, Schweizer U, Schomburg L, Köhrle J & Renko K. Silychristin, a flavonolignan derived from the milk thistle, is a potent inhibitor of the thyroid hormone transporter MCT 8. Endocrinology 2016 157 1694-701. (https://doi.org/10.1210/en.2015-1933)
Hossard L, Philibert A, Bertrand M, Colnenne-David C, Debaeke P, Munier-Jolain N, Jeuffroy MH, Richard G & Makowski D. Effects of halving pesticide use on wheat production. Scientific Reports 2014 4 4405. (https://doi.org/10.1038/srep04405)
EFSA. Scientific opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile. EFSA Journal 2013 11 3293. (https://doi.org/10.2903/j.efsa.2013.3293)
Carson R. Silent spring. Foreign Affairs 1962 76 218-219.
Guimarães RM, Asmus CIRF & Meyer A. DDT reintroduction for malaria control: the cost-benefit debate for public health. Cadernos de Saúde Pública 2007 23 2835-2844.
Hernández-Mariano JÁ, Torres-Sánchez L, Bassol-Mayagoitia S, Escamilla-Nuñez MC, Cebrian ME, Villeda-Gutiérrez ÉA, López-Rodríguez G, Félix-Arellano EE & Blanco-Muñoz J. Effect of exposure to p,p′-DDE during the first half of pregnancy in the maternal thyroid profile of female residents in a Mexican floriculture area. Environmental Research 2017 156 597-604. (https://doi.org/10.1016/j.envres.2017.04.013)
Barraza-Vázquez A, Borja-Aburto VH, Bassol-Mayagoitia S, Monrroy A & Recio-Vega R. Dichlorodiphenyldichloroethylene concentrations in umbilical cord of newborns and determinant maternal factors. Journal of Applied Toxicology 2008 28 27-34. (https://doi.org/10.1002/jat.1247)
Sala M, Ribas-Fitó N, Cardo E, de Muga ME, Marco E, Mazón C, Verdú A, Grimalt JO & Sunyer J. Levels of hexachlorobenzene and other organochlorine compounds in cord blood: exposure across placenta. Chemosphere 2001 43 895-901. (https://doi.org/10.1016/S0045-6535(00)00450-1)
Cano-Sancho G, Salmon AG & La Merrill MA. Association between exposure to p,p′-DDT and its metabolite p,p′-DDE with obesity: integrated systematic review and meta-analysis. Environmental Health Perspectives 2017 125 96002. (https://doi.org/10.1289/EHP527)
Gaspar FW, Harley KG, Kogut K, Chevrier J, Mora AM, Sjödin A & Eskenazi B. Prenatal DDT and DDE exposure and child IQ in the CHAMACOS cohort. Environment International 2015 85 206-212. (https://doi.org/10.1016/j.envint.2015.09.004)
Zhang X, Wu X, Lei B, Jing Y, Jiang Z, Zhang X, Fang X & Yu Y. Transplacental transfer characteristics of organochlorine pesticides in paired maternal and cord sera, and placentas and possible influencing factors. Environmental Pollution 2018 233 446-454. (https://doi.org/10.1016/j.envpol.2017.10.075)
Forns J, Mandal S, Iszatt N, Polder A, Thomsen C, Lyche JL, Stigum H, Vermeulen R & Eggesbø M. Novel application of statistical methods for analysis of multiple toxicants identifies DDT as a risk factor for early child behavioral problems. Environmental Research 2016 151 91-100. (https://doi.org/10.1016/j.envres.2016.07.014)
Kezios KL Liu X, Cirillo PM, Cohn BA, Kalantzi OI, Wang Y, Petreas MX, Park JS & Factor-Litvak P. Dichlorodiphenyltrichloroethane (DDT), DDT metabolites and pregnancy outcomes. Reproductive Toxicology 2013 35 156-164. (https://doi.org/10.1016/j.reprotox.2012.10.013)
Torres-Sánchez L, Schnaas L, Rothenberg SJ, Cebrián ME, Osorio-Valencia E, Hernández Mdel C, García-Hernández RM & López-Carrillo L. Prenatal p,ṕ-DDE exposure and neurodevelopment among children 3.5-5 years of age. Environmental Health Perspectives 2013 121 263-268.
Eskenazi B, Chevrier J, Rosas LG, Anderson HA, Bornman MS, Bouwman H, Chen A, Cohn BA, de Jager C, Henshel DS, et al. The pine river statement: human health consequences of DDT use. Environmental Health Perspectives 2009 117 1359-1367. (https://doi.org/10.1289/ehp.11748)
Torres-Sánchez L, Rothenberg SJ, Schnaas L, Cebrián ME, Osorio E, Del Carmen Hernández M, García-Hernández RM, Del Rio-Garcia C, Wolff MS & López-Carrillo L. In utero p,p′-DDE exposure and infant neurodevelopment: a perinatal cohort in Mexico. Environmental Health Perspectives 2007 115 435-439. (https://doi.org/10.1289/ehp.9566)
Eskenazi B, Marks AR, Bradman A, Fenster L, Johnson C, Barr DB & Jewell NP. In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics 2006 118 233-241. (https://doi.org/10.1542/peds.2005-3117)
Ribas-Fitó N, Torrent M, Carrizo D, Muñoz-Ortiz L, Júlvez J, Grimalt JO & Sunyer J. In utero exposure to background concentrations of DDT and cognitive functioning among preschoolers. American Journal of Epidemiology 2006 164 955-962. (https://doi.org/10.1093/aje/kwj299)
Zhuang S, Zhang J, Wen Y, Zhang C & Liu W. Distinct mechanisms of endocrine disruption of DDT-related pesticides toward estrogen receptor α and estrogen-related receptor γ. Environmental Toxicology and Chemistry 2012 31 2597-2605. (https://doi.org/10.1002/etc.1986)
Mussi P, Ciana P, Raviscioni M, Villa R, Regondi S, Agradi E, Maggi A & Di Lorenzo D. Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. Brain Research Bulletin 2005 65 241-247. (https://doi.org/10.1016/j.brainresbull.2004.11.016)
Kojima H, Katsura E, Takeuchi S, Niiyama K & Kobayashi K. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environmental Health Perspectives 2004 112 524-531. (https://doi.org/10.1289/ehp.6649)
Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA & Wilson EM. Persistent DDT Metabolite p,p′-DDE is a potent androgen receptor antagonist. Obstetrical and Gynecological Survey 1996 51 111-114. (https://doi.org/10.1038/375581a0)
Schell LM, Gallo MV, Deane GD, Nelder KR, DeCaprio AP, Jacobs A & Akwesasne Task Force on the Environment. Relationships of polychlorinated biphenyls and dichlorodiphenyldichloroethylene (p,p′-DDE) with testosterone levels in adolescent males. Environmental Health Perspectives 2014 122 304-309. (https://doi.org/10.1289/ehp.122-A304)
Eskenazi B, Rauch SA, Tenerelli R, Huen K, Holland NT, Lustig RH, Kogut K, Bradman A, Sjödin A & Harley KG. In utero and childhood DDT, DDE, PBDE and PCBs exposure and sex hormones in adolescent boys: the CHAMACOS study. International Journal of Hygiene and Environmental Health 2017 220 364-372. (https://doi.org/10.1016/j.ijheh.2016.11.001)
Cohn BA, La Merrill M, Krigbaum NY, Yeh G, Park JS, Zimmermann L & Cirillo PM. DDT exposure in utero and breast cancer. Journal of Clinical Endocrinology and Metabolism 2015 100 2865-2872. (https://doi.org/10.1210/jc.2015-1841)
de Cock M, de Boer MR, Lamoree M, Legler J & van de Bor M. Prenatal exposure to endocrine disrupting chemicals in relation to thyroid hormone levels in infants – a Dutch prospective cohort study. Environmental Health 2014 13 106. (https://doi.org/10.1186/1476-069X-13-106)
Blanco-Muñoz J, Lacasaña M, López-Flores I, Rodríguez-Barranco M, González-Alzaga B, Bassol S, Cebrian ME, López-Carrillo L & Aguilar-Garduño C. Association between organochlorine pesticide exposure and thyroid hormones in floriculture workers. Environmental Research 2016 150 357-363. (https://doi.org/10.1016/j.envres.2016.05.054)
Li C, Cheng Y, Tang Q, Lin S, Li Y, Hu X, Nian J, Gu H, Lu Y, Tang H, et al. The association between prenatal exposure to organochlorine pesticides and thyroid hormone levels in newborns in Yancheng, China. Environmental Research 2014 129 47-51. (https://doi.org/10.1016/j.envres.2013.12.009)
Parent AS, Naveau E, Gerard A, Bourguignon JP & Westbrook GL. Early developmental actions of endocrine disruptors on the hypothalamus, hippocampus, and cerebral cortex. Journal of Toxicology and Environmental Health: Part B, Critical Reviews 2011 14 328-345. (https://doi.org/10.1080/10937404.2011.578556)
Takser L, Mergler D, Baldwin M, de Grosbois S, Smargiassi A & Lafond J. Thyroid hormones in pregnancy in relation to environmental exposure to organochlorine compounds and mercury. Environmental Health Perspectives 2005 113 1039-1045. (https://doi.org/10.1289/ehp.7685)
Lopez-Espinosa MJ, Vizcaino E, Murcia M, Llop S, Espada M, Seco V, Marco A, Rebagliato M, Grimalt JO & Ballester F. Association between thyroid hormone levels and 4,4′-DDE concentrations in pregnant women (Valencia, Spain). Environmental Research 2009 109 479-485. (https://doi.org/10.1016/j.envres.2009.02.003)
Rossi M, Taddei AR, Fasciani I, Maggio R & Giorgi F. The cell biology of the thyroid-disrupting mechanism of dichlorodiphenyltrichloroethane (DDT). Journal of Endocrinological Investigation 2017 41 67-73. (https://doi.org/10.1007/s40618-017-0716-9)
Rossi M, Dimida A, Dell’anno MT, Trincavelli ML, Agretti P, Giorgi F, Corsini GU, Pinchera A, Vitti P, Tonacchera M, et al. The thyroid disruptor 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane appears to be an uncompetitive inverse agonist for the thyrotropin receptor. Journal of Pharmacology and Experimental Therapeutics 2007 320 465-474. (https://doi.org/10.1124/jpet.106.113613)
Rossi M, Dimida A, Ferrarini E, Silvano E, De Marco G, Agretti P, Aloisi G, Simoncini T, Di Bari L, Tonacchera M, et al. Presence of a putative steroidal allosteric site on glycoprotein hormone receptors. European Journal of Pharmacology 2009 623 155-159. (https://doi.org/10.1016/j.ejphar.2009.09.029)
Santini F, Vitti P, Ceccarini G, Mammoli C, Rosellini V, Pelosini C, Marsili A, Tonacchera M, Agretti P, Santoni T, et al. In vitro assay of thyroid disruptors affecting TSH-stimulated adenylate cyclase activity. Journal of Endocrinological Investigation 2003 26 950-955. (https://doi.org/10.1007/BF03348190)
De Gregorio F, Pellegrino M, Picchietti S, Belardinelli MC, Taddei AR, Fausto AM, Rossi M, Maggio R & Giorgi F. The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells. Toxicology and Applied Pharmacology 2011 253 121-129. (https://doi.org/10.1016/j.taap.2011.03.018)
Liu C, Shi Y, Li H, Wang Y & Yang KP. p-DDE disturbs the homeostasis of thyroid hormones via thyroid hormone receptors, transthyretin, and hepatic enzymes. Hormone and Metabolic Research 2011 43 391-396. (https://doi.org/10.1055/s-0031-1277135)
Liu C, Ha M, Li L & Yang K. PCB153 and p,p′-DDE disorder thyroid hormones via thyroglobulin, deiodinase 2, transthyretin, hepatic enzymes and receptors. Environmental Science and Pollution Research 2014 21 11361-11369. (https://doi.org/10.1007/s11356-014-3093-3)
Yaglova NV & Yaglov VV. Changes in thyroid status of rats after prolonged exposure to low dose dichlorodiphenyltrichloroethane. Bulletin of Experimental Biology and Medicine 2014 156 760-762. (https://doi.org/10.1007/s10517-014-2443-y)
Gocmen A, Peters HA, Cripps DJ, Bryan GT & Morris CR. Hexachlorobenzene episode in Turkey. Biomedical and Environmental Sciences 1989 2 36-43.
Schmid R. Cutaneous porphyria in Turkey. New England Journal of Medicine 1960 263 397-398. (https://doi.org/10.1056/NEJM196008252630807)
Chalouati H, Gamet-Payrastre L & Ben Saad M. Irreversible thyroid disruption induced after subchronic exposure to hexachlorobenzene in male rats. Toxicology and Industrial Health 2013 32 822-831. (https://doi.org/10.1177/0748233713511511)
Cabral JR & Shubik P. Carcinogenic activity of hexachlorobenzene in mice and hamsters. IARC Scientific Publications 1986 411-416. (https://doi.org/10.1038/269510a0)
Cabral JRP, Mollner T, Raitano F & Shubik P. Carcinogenesis of hexachlorobenzene in mice. International Journal of Cancer 1979 23 47-51. (https://doi.org/10.1002/ijc.2910230110)
Cabral JRP, Shubik P, Mollner T & Raitano F. Carcinogenic activity of hexacholorobenzene in hamsters. Nature 1977 269 510-511. (https://doi.org/10.1038/269510a0)
Can C & Nigogosyan G. Acquired toxic porphyria cutanea tarda due to hexachlorobenzene. Report of 348 cases caused by this fungicide. JAMA 1963 183 88-91.
Eskenazi B, Harley K, Bradman A, Weltzien E, Jewell NP, Barr DB, Furlong CE & Holland NT. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environmental Health Perspectives 2004 112 1116-1124. (https://doi.org/10.1289/ehp.6789)
Ribas-Fitó N, Torrent M, Carrizo D, Júlvez J, Grimalt JO & Sunyer J. Exposure to hexachlorobenzene during pregnancy and children’s social behavior at 4 years of age. Environmental Health Perspectives 2007 115 447-450. (https://doi.org/10.1289/ehp.9314)
Smink A, Ribas-Fito N, Garcia R, Torrent M, Mendez MA, Grimalt JO & Sunyer J. Exposure to hexachlorobenzene during pregnancy increases the risk of overweight in children aged 6 years. Acta Paediatrica 2008 97 1465-1469. (https://doi.org/10.1111/j.1651-2227.2008.00937.x)
Sala M, Sunyer J, Herrero C, To-Figueras J & Grimalt J. Association between serum concentrations of hexachlorobenzene and polychlorobiphenyls with thyroid hormone and liver enzymes in a sample of the general population. Occupational and Environmental Medicine 2001 58 172-177. (https://doi.org/10.1136/oem.58.3.172)
Meeker JD, Altshul L & Hauser R. Serum PCBs, p,p′-DDE and HCB predict thyroid hormone levels in men. Environmental Research 2007 104 296-304. (https://doi.org/10.1016/j.envres.2006.11.007)
Foster WG, McMahon A, Villeneuve DC & Jarrell JF. Hexachlorobenzene (HCB) suppresses circulating progesterone concentrations during the luteal phase in the cynomolgus monkey. Journal of Applied Toxicology 1992 12 13-17. (https://doi.org/10.1002/jat.2550120105)
Foster WG, McMahon A, Younglai EV, Jarrell JF & Lecavalier P. Alterations in circulating ovarian steroids in hexachlorobenzeneexposed monkeys. Reproductive Toxicology 1995 9 541-548. (https://doi.org/10.1016/0890-6238(95)02004-7)
Jarrell JF, McMahon A, Villeneuve D, Franklin C, Singh A, Valli VE & Bartlett S. Hexachlorobenzene toxicity in the monkey primordial germ cell without induced porphyria. Reproductive Toxicology 1993 7 41-47. (https://doi.org/10.1016/0890-6238(93)90008-U)
Sims DE, Singh A, Donald A, Jarrell J & Villeneuve DC. Alteration of primate ovary surface epithelium by exposure to hexachlorobenzene: A quantitative study. Histology and Histopathology 1991 6 525-529.
Babineau KA, Singh A, Jarrell JF & Villeneuve DC. Surface epithelium of the ovary following oral administration of hexachlorobenzene to the monkey. Journal of Submicroscopic Cytology and Pathology 1991 23 457-464.
Arnold DL, Moodie CA, Charbonneau SM, Grice HC, McGuire PF, Bryce FR, Collins BT, Zawidzka ZZ, Krewski DR, Nera EA, et al. Long-term toxicity of hexachlorobenzene in the rat and the effect of dietary vitamin A. Food and Chemical Toxicology 1985 23 779-793. (https://doi.org/10.1016/0278-6915(85)90278-9)
Hadjab S, Maurel D, Cazals Y & Siaud P. Hexachlorobenzene, a dioxin-like compound, disrupts auditory function in rat. Hearing Research 2004 191 125-134. (https://doi.org/10.1016/j.heares.2003.12.017)
van Raaij JAGM, Kaptein E, Visser TJ & van den Berg KJ. Increased glucuronidation of thyroid hormone in hexachlorobenzene-treated rats. Biochemical Pharmacology 1993 45 627-631. https://doi.org/10.1016/0006-2952(93)90136-K)
Smith AG, Dinsdale D, Cabral JR & Wright AL. Goitre and wasting induced in hamsters by hexachlorobenzene. Archives of Toxicology 1987 60 343-349. (https://doi.org/10.1007/BF00295753)
Van Raaij JAGM, Frijters CMG & van den Berg KJ. Hexachlorobenzene-induced hypothyroidism. Involvement of different mechanisms by parent compound and metabolite. Biochemical Pharmacology 1993 46 1385-1391. (https://doi.org/10.1016/0006-2952(93)90103-4)
Alvarez L, Hernández S, Martinez-de-Mena R, Kolliker-Frers R, Obregón MJ & Kleiman de Pisarev DL. The role of type I and type II 5′ deiodinases on hexachlorobenzene-induced alteration of the hormonal thyroid status. Toxicology 2005 207 349-362. (https://doi.org/10.1016/j.tox.2004.10.006)
Chiappini F, Pontillo C, Randi A, Alvarez L & Kleiman de Pisarev DL. Hexachlorobenzene induces TGF-β1 expression, which is a regulator of p27 and cyclin D1 modifications. Toxicology Letters 2014 230 1-9. (https://doi.org/10.1016/j.toxlet.2014.08.002)
Chiappini F, Alvarez L, Lux-Lantos V, Randi AS & Kleiman de Pisarev DL. Hexachlorobenzene triggers apoptosis in rat thyroid follicular cells. Toxicological Sciences 2009 108 301-310. (https://doi.org/10.1093/toxsci/kfp016)
Muller M, Hess L, Tardivo A, Lajmanovich R, Attademo A, Poletta G, Simoniello MF, Yodice A, Lavarello S, Chialvo D, et al. Neurologic dysfunction and genotoxicity induced by low levels of chlorpyrifos. Neurotoxicology 2014 45 22-30. (https://doi.org/10.1016/j.neuro.2014.08.012)
Whyatt RM, Barr DB, Camann DE, Kinney PL, Barr JR, Andrews HF, Hoepner LA, Garfinkel R, Hazi Y, Reyes A, et al. Contemporaryuse pesticide in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns. Environmental Health Perspectives 2003 111 749-756. (https://doi.org/10.1289/ehp.5768)
Perera FP, Illman SM, Kinney PL, Whyatt RM, Kelvin EA, Shepard P, Evans D, Fullilove M, Ford J, Miller RL, et al. The challenge of preventing environmentally related disease in young children: community-based research in New York City. Environmental Health Perspectives 2002 110 197-204. (https://doi.org/10.1289/ehp.02110197)
Whyatt RM, Rauh V, Barr DB, Camann DE, Andrews HF, Garfinkel R, Hoepner LA, Diaz D, Dietrich J, Reyes A, et al. Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environmental Health Perspectives 2004 112 1125-1132. (https://doi.org/10.1289/ehp.6641)
Farahat T, Hala Mohammed S, Sanad Z & NA F. Organophosphate pesticide exposure during pregnancy and adverse perinatal outcome. Journal of Women’s Health Care 2016 5 1-4.
Abdel-Rahman A, Blumenthal GM, Abou-Donia SA, Ali FA, Abdel-Monem AE & Abou-Donia MB. Pharmacokinetic profile and placental transfer of a single intravenous injection of [(14)C] chlorpyrifos in pregnant rats. Archives of Toxicology 2002 76 452-459. (https://doi.org/10.1007/s00204-002-0366-2)
Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D & Whyatt RW. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 2006 118 e1845-e1859. (https://doi.org/10.1542/peds.2006-0338)
De Cock M, Maas YGH & Van De Bor M. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatrica, International Journal of Paediatrics 2012 101 811-818. (https://doi.org/10.1111/j.1651-2227.2012.02693.x)
Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB & Whyatt R. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environmental Health Perspectives 2011 119 1196-1201. (https://doi.org/10.1289/ehp.1003160)
Rauh VA, Garcia WE, Whyatt RM, Horton MK, Barr DB & Louis ED. Prenatal exposure to the organophosphate pesticide chlorpyrifos and childhood tremor. Neurotoxicology 2015 51 80-86. (https://doi.org/10.1016/j.neuro.2015.09.004)
Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, et al. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Critical Reviews in Toxicology 2008 38 1-125. (https://doi.org/10.1080/10408440802272158)
Reiss R, Chang ET, Richardson RJ & Goodman M. A review of epidemiologic studies of low-level exposures to organophosphorus insecticides in non-occupational populations. Critical Reviews in Toxicology 2015 45 531-641. (https://doi.org/10.3109/10408444.2015.1043976)
Timchalk C, Nolan RJ, Mendrala AL, Dittenber DA, Brzak KA & Mattsson JL. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicological Sciences 2002 66 34-53. (https://doi.org/10.1093/toxsci/66.1.34)
United States Environmental Protection Agency. EPA administrator Pruitt denies petition to ban widely used pesticide. Washington DC, USA: EPA, 2017. (available at: https://www.epa.gov/newsreleases/epaadministrator-pruitt-denies-petition-ban-widely-used-pesticide-0)
Trasande L. When enough data are not enough to enact policy: The failure to ban chlorpyrifos. PLoS Biology 2017 15 e2003671. (https://doi.org/10.1371/journal.pbio.2003671)
Fortenberry GZ, Hu H, Turyk M, Barr DB & Meeker JD. Association between urinary 3,5,6-trichloro-2-pyridinol, a metabolite of chlorpyrifos and chlorpyrifos-methyl, and serum T4 and TSH in NHANES 1999-2002. Science of the Total Environment 2012 424 351-355. (https://doi.org/10.1016/j.scitotenv.2012.02.039)
Meeker JD, Barr DB & Hauser R. Thyroid hormones in relation to urinary metabolites of non-persistent insecticides in men of reproductive age. Reproductive Toxicology 2006 22 437-442. (https://doi.org/10.1016/j.reprotox.2006.02.005)
Slotkin TA, Cooper EM, Stapleton HM & Seidler FJ. Does thyroid disruption contribute to the developmental neurotoxicity of chlorpyrifos? Environmental Toxicology and Pharmacology 2013 36 284-287. (https://doi.org/10.1016/j.etap.2013.04.003)
De Angelis S, Tassinari R, Maranghi F, Eusepi A, Di Virgilio A, Chiarotti F, Ricceri L, Venerosi Pesciolini A, Gilardi E, Moracci G, et al. Developmental exposure to chlorpyrifos induces alterations in thyroid and thyroid hormone levels without other toxicity signs in CD-1 mice. Toxicological Sciences 2009 108 311-319. (https://doi.org/10.1093/toxsci/kfp017)
Silva JG, Boareto AC, Schreiber AK, Redivo DD, Gambeta E, Vergara F, Morais H, Zanoveli JM & Dalsenter PR. Chlorpyrifos induces anxiety-like behavior in offspring rats exposed during pregnancy. Neuroscience Letters 2017 641 94-100. (https://doi.org/10.1016/j.neulet.2017.01.053)
Ghisari M & Bonefeld-Jorgensen EC. Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells. Molecular and Cellular Endocrinology 2005 244 31-41.
Jeong SH, Kim BY, Kang HG, Ku HO & Cho JH. Effect of chlorpyrifos-methyl on steroid and thyroid hormones in rat F0-and F1-generations. Toxicology 2006 220 189-202. (https://doi.org/10.1016/j.tox.2006.01.005)
Ventura C, Núñez M, Miret N, Martinel Lamas D, Randi A, Venturino A, Rivera E & Cocca C. Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or -independent breast cancer cells exposed to low or high concentrations of the pesticide. Toxicology Letters 2012 213 184-193. (https://doi.org/10.1016/j.toxlet.2012.06.017)
Grünfeld HT & Bonefeld-Jorgensen EC. Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels. Toxicology Letters 2004 151 467-480.
Yu K, Li G, Feng W, Liu L, Zhang J, Wu W, Xu L & Yan Y. Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish. Chemico-Biological Interactions 2015 239 26-33. (https://doi.org/10.1016/j.cbi.2015.06.010)
Ventura C Nieto MR, Bourguignon N, Lux-Lantos V, Rodriguez H, Cao G, Randi A, Cocca C & Núñez M. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. Journal of Steroid Biochemistry and Molecular Biology 2016 156 1-9. (https://doi.org/10.1016/j.jsbmb.2015.10.010)
Viswanath G, Chatterjee S, Dabral S, Nanguneri SR, Divya G & Roy P. Anti-androgenic endocrine disrupting activities of chlorpyrifos and piperophos. Journal of Steroid Biochemistry and Molecular Biology 120 22-29. (https://doi.org/10.1016/j.jsbmb.2010.02.032)
Wegner S, Browne P & Dix D. Identifying reference chemicals for thyroid bioactivity screening. Reproductive Toxicology 2016 65 402-413. (https://doi.org/10.1016/j.reprotox.2016.08.016)
Marinovich M, Guizzetti M, Ghilardi F, Viviani B, Corsini E & Galli CL. Thyroid peroxidase as toxicity target for dithiocarbamates. Archives of Toxicology 1997 71 508-512. (https://doi.org/10.1007/s002040050420)
Mallem L, Boulakoud MS & Franck M. Hypothyroidism after medium exposure to the fungicide maneb in the rabbit Cuniculus lepus. Communications in Agricultural and Applied Biological Sciences 2006 71 91-99.
Axelstad M, Boberg J, Nellemann C, Kiersgaard M, Jacobsen PR, Christiansen S, Hougaard KS & Hass U. Exposure to the widely used fungicide mancozeb causes thyroid hormone disruption in rat dams but no behavioral effects in the offspring. Toxicological Sciences 2011 120 439-446. (https://doi.org/10.1093/toxsci/kfr006)
Medda E, Santini F, De Angelis S, Franzellin F, Fiumalbi C, Perico A, Gilardi E, Mechi MT, Marsili A, Citroni A, et al. Iodine nutritional status and thyroid effects of exposure to ethylenebisdithiocarbamates. Environmental Research 2017 154 152-159. (https://doi.org/10.1016/j.envres.2016.12.019)
Hester SD, Wolf DC, Nesnow S & Thai SF. Transcriptional profiles in liver from rats treated with tumorigenic and non-tumorigenic triazole conazole fungicides: propiconazole, triadimefon, and myclobutanil. Toxicologic Pathology 2006 34 879-894. (https://doi.org/10.1080/01926230601047824)
Campos É & Freire C. Exposure to non-persistent pesticides and thyroid function: a systematic review of epidemiological evidence. International Journal of Hygiene and Environmental Health 2016 219 481-497. (https://doi.org/10.1016/j.ijheh.2016.05.006)
Yadav AK & Singh TP. Pesticide-induced impairment of thyroid physiology in the freshwater catfish, Heteropneustes fossilis. Environmental Pollution 1987 43 29-38. (https://doi.org/10.1016/0269-7491(87)90165-5)
Van den Berg KJ, van Raaij JAGM, Bragt PC & Notten WRF. Interactions of halogenated industrial chemicals with transthyretin and effects on thyroid hormone levels in vivo. Archives of Toxicology 1991 65 15-19. (https://doi.org/10.1007/BF01973497)
Ishihara A, Sawatsubashi S & Yamauchi K. Endocrine disrupting chemicals: interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Molecular and Cellular Endocrinology 2003 199 105-117.
Sinha N, Lal B & Singh TP. Carbaryl-induced thyroid dysfunction in the freshwater catfish Clarias batrachus. Ecotoxicology and Environmental Safety 1991 21 240-247. (https://doi.org/10.1016/0147-6513(91)90062-T)
Akhtar N, Kayani SA, Ahmad MM & Shahab M. Insecticideinduced changes in secretory activity of the thyroid gland in rats. Journal of Applied Toxicology 1996 16 397-400. (https://doi.org/10.1002/(SICI)1099-1263(199609)16:5<397::AIDJAT362>3.0.CO;2-Y)
Lerro CC, Koutros S, Andreotti G, Friesen MC, Alavanja MC, Blair A, Hoppin JA, Sandler DP, Lubin JH, Ma X, et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occupational and Environmental Medicine 2015 72 736-744. (https://doi.org/10.1136/oemed-2014-102798)
Jin Y, Liu J, Wang L, Chen R, Zhou C, Yang Y, Liu W & Fu Z. Permethrin exposure during puberty has the potential to enantioselectively induce reproductive toxicity in mice. Environment International 2012 42 144-151. (https://doi.org/10.1016/j.envint.2011.05.020)
Jin Y, Chen R, Sun L, Wang W, Zhou L, Liu W & Fu Z. Enantioselective induction of estrogen-responsive gene expression by permethrin enantiomers in embryo-larval zebrafish. Chemosphere 2009 74 1238-1244. (https://doi.org/10.1016/j.chemosphere.2008.11.015)
Du G, Shen O, Sun H, Fei J, Lu C, Song L, Xia Y, Wang S & Wang X. Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays. Toxicological Sciences 2010 116 58-66. (https://doi.org/10.1093/toxsci/kfq120)
Tu W, Xu C, Jin Y, Lu B, Lin C, Wu Y & Liu W. Permethrin is a potential thyroid-disrupting chemical: in vivo and in silico envidence. Aquatic Toxicology 2016 175 39-46. (https://doi.org/10.1016/j.aquatox.2016.03.006)
Maiti PK, Kar A, Gupta P & Chaurasia SS. Loss of membrane integrity and inhibition of type-I iodothyronine 5′-monodeiodinase activity by fenvalerate in female mouse. Biochemical and Biophysical Research Communications 1995 214 905-909.
Maiti PK & Kar A. Dimethoate inhibits extrathyroidal 5′-monodeiodination of thyroxine to 3,3′,5-triiodothyronine in mice: the possible involvement of the lipid peroxidative process. Toxicology Letters 1997 91 1-6. (https://doi.org/10.1016/S0378-4274(96)03865-9)
Tu W, Xu C, Lu B, Lin C, Wu Y & Liu W. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus-pituitary-thyroid axis in zebrafish embryos. Science of the Total Environment 2016 542 876-885. (https://doi.org/10.1016/j.scitotenv.2015.10.131)
Kaul PP, Rastogi A, Hans RK, Seth TD, Seth PK & Srimal RC. Fenvalerate-induced alterations in circulatory thyroid hormones and calcium stores in rat brain. Toxicology Letters 1996 89 29-33. (https://doi.org/10.1016/S0378-4274(96)03778-2)
Giray B, Caǧlayan A, Erkekoǧlu P & HIncal F. Fenvalerate exposure alters thyroid hormone status in selenium-and/or iodine-deficient rats. Biological Trace Element Research 2010 135 233-241. (https://doi.org/10.1007/s12011-009-8506-7)
Cotgreave I, Alavian Ghavanini A, Alfaro-Moreno E, Bergman Å, Cederbrant K, Forsby A, Förare J, Gustafsson Å, Hellmold H, Lindberg J, et al. Pyriproxifen and microcephaly: an investigation of potential ties to the ongoing ’Zika epidemic’. Södertälje, Sweden: The Swedish Center for Toxicology Sciences, 2016. (available at: http:// swetox.se/wp-content/uploads/2016/03/ppf-zika.pdf)
van den Berg M, Kypke K, Kotz A, Tritscher A, Lee SY, Magulova K, Fiedler H & Malisch R. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefit-risk evaluation of breastfeeding. Archives of Toxicology 2017 91 83-96. (https://doi.org/10.1007/s00204-016-1802-z)
Meironyté Guvenius D, Aronsson A, Ekman-Ordeberg G, Bergman Å & Norén K. Human prenatal and postnatal exposure to polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorobiphenylols, and pentachlorophenol. Environmental Health Perspectives 2003 111 1235-1241.
Soechitram SD, Athanasiadou M, Hovander L, Bergman Å & Sauer PJJ. Fetal exposure to PCBs and their hydroxylated metabolites in a Dutch cohort. Environmental Health Perspectives 2004 112 1208-1212. (https://doi.org/10.1289/ehp.6424)
Fängström B, Strid A, Grandjean P, Weihe P & Bergman Å. A retrospective study of PBDEs and PCBs in human milk from the Faroe Islands. Environmental Health 2005 4 12.
Guvenius DM, Hassanzadeh P, Bergman A & Norén K. Metabolites of polychlorinated biphenyls in human liver and adipose tissue. Environmental Toxicology and Chemistry 2002 21 2264-2269. (https://doi.org/10.1002/etc.5620211102)
Valvi D, Mendez MA, Martinez D, Grimalt JO, Torrent M, Sunyer J & Vrijheid M. Prenatal concentrations of polychlorinated biphenyls, DDE, and DDT and overweight in children: a prospective birth cohort study. Environmental Health Perspectives 2012 120 451-457. (https://doi.org/10.1289/ehp.1103862)
Caspersen IH, Aase H, Biele G, Brantsæter AL, Haugen M, Kvalem HE, Skogan AH, Zeiner P, Alexander J, Meltzer HM & Knutsen HK. The influence of maternal dietary exposure to dioxins and PCBs during pregnancy on ADHD symptoms and cognitive functions in Norwegian preschool children. Environment International 2016 94 649-660. (https://doi.org/10.1016/j.envint.2016.06.033)
Stewart PW, Lonky E, Reihman J, Pagano J, Gump BB & Darvill T. The relationship between prenatal PCB exposure and intelligence (IQ) in 9-year-old children. Environmental Health Perspectives 2008 116 1416-1422. (https://doi.org/10.1289/ehp.11058)
Walkowiak J, Wiener JA, Fastabend A, Heinzow B, Krämer U, Schmidt E, Steingrüber HJ, Wundram S & Winneke G. Environmental exposure to polychlorinated biphenyls and quality of the home environment: effects on psychodevelopment in early childhood. Lancet 2001 358 1602-1607. (https://doi.org/10.1016/S0140-6736(01)06654-5)
Verner MA, Plusquellec P, Desjardins JL, Cartier C, Haddad S, Ayotte P, Dewailly É & Muckle G. Prenatal and early-life polychlorinated biphenyl (PCB) levels and behavior in Inuit preschoolers. Environment International 2015 78 90-94. (https://doi.org/10.1016/j.envint.2015.02.004)
Ethier AA, Muckle G, Jacobson SW, Ayotte P, Jacobson JL & Saint-Amour D. Assessing new dimensions of attentional functions in children prenatally exposed to environmental contaminants using an adapted Posner paradigm. Neurotoxicology and Teratology 2015 51 27-34. (https://doi.org/10.1016/j.ntt.2015.07.005)
Schantz SL, Widholm JJ & Rice DC. Effects of PCB exposure on neuropsychological function in children. Environmental Health Perspectives 2003 111 357-576. (https://doi.org/10.1289/ehp.5461)
Behforooz B, Newman J, Gallo MV & Schell LM. PCBs and measures of attention and impulsivity on a continuous performance task of young adults. Neurotoxicology and Teratology 2017 64 29-36.
Šovčíková E, Wimmerová S, Strémy M, Kotianová J, Loffredo CA, Murínová ĽP, Chovancová J, Čonka K, Lancz K & Trnovec T. Simple reaction time in 8-9-year old children environmentally exposed to PCBs. Neurotoxicology 2015 51 138-144. (https://doi.org/10.1016/j.neuro.2015.10.005)
Berghuis SA, Soechitram SD, Hitzert MM, Sauer PJJ & Bos AF. Prenatal exposure to polychlorinated biphenyls and their hydroxylated metabolites is associated with motor development of threemonth-old infants. Neurotoxicology 2013 38 124-130. (https://doi.org/10.1016/j.neuro.2013.07.003)
Lyall K, Croen LA, Sjödin A, Yoshida CK, Zerbo O, Kharrazi M & Windham GC. Polychlorinated biphenyl and organochlorine pesticide concentrations in maternal mid-pregnancy serum samples: association with Autism spectrum disorder and intellectual disability. Environmental Health Perspectives 2017 125 474-480. (https://doi.org/10.1289/EHP277)
Cheslack-Postava K, Rantakokko PV, Hinkka-Yli-Salomäki S, Surcel HM, McKeague IW, Kiviranta HA, Sourander A & Brown AS. Maternal serum persistent organic pollutants in the Finnish Prenatal Study of Autism: a pilot study. Neurotoxicology and Teratology 2013 38 1-5. (https://doi.org/10.1016/j.ntt.2013.04.001)
Neugebauer J, Wittsiepe J, Kasper-Sonnenberg M, Schöneck N, Schölmerich A & Wilhelm M. The influence of low level pre-and perinatal exposure to PCDD/Fs, PCBs, and lead on attention performance and attention-related behavior among German school-aged children: results from the Duisburg Birth Cohort Study. International Journal of Hygiene and Environmental Health 2015 218 153-162. (https://doi.org/10.1016/j.ijheh.2014.09.005)
Verner MA, Hart JE, Sagiv SK, Bellinger DC, Altshul LM & Korrick SA. Measured prenatal and estimated postnatal levels of polychlorinated biphenyls (PCBs) and ADHD-related behaviors in 8-year-old children. Environmental Health Perspectives 2015 123 888-894. (https://doi.org/10.1289/ehp.1408084)
Bergkvist C, Berglund M, Glynn A, Wolk A & Åkesson A. Dietary exposure to polychlorinated biphenyls and risk of myocardial infarction -a population-based prospective cohort study. International Journal of Cardiology 2015 183 242-248. (https://doi.org/10.1016/j.ijcard.2015.01.055)
Langer P, Tajtáková M, Kocan A, Petrík J, Koska J, Ksinantová L, Rádiková Z, Ukropec J, Imrich R, Hucková M, et al. Thyroid ultrasound volume, structure and function after long-term high exposure of large population to polychlorinated biphenyls, pesticides and dioxin. Chemosphere 2007 69 118-127. (https://doi.org/10.1016/j.chemosphere.2007.04.039)
Langer P, Tajtakova M, Kocan A, Drobna B, Kostalova L, Fodor G & Klimes I. Tyroid volume, iodine intake, autoimmune thyroid disorders, inborn factors, and endocrine disruptors: twenty-year studies of multiple effects puzzle in slovakia. Endocrine Regulations 2012 46 191-203. (https://doi.org/10.4149/endo_2012_04_191)
McKinney JD & Waller CL. Polychlorinated biphenyls as hormonally active structural analogues. Environmental Health Perspectives 1994 102 290-297. (https://doi.org/10.1289/ehp.94102290)
Otake T, Yoshinaga J, Enomoto T, Matsuda M, Wakimoto T, Ikegami M, Suzuki E, Naruse H, Yamanaka T, Shibuya N, et al. Thyroid hormone status of newborns in relation to in utero exposure to PCBs and hydroxylated PCB metabolites. Environmental Research 2007 105 240-246. (https://doi.org/10.1016/j.envres.2007.03.010)
Herbstman JB, Sjödin A, Apelberg BJ, Witter FR, Halden RU, Patterson DG, Panny SR, Needham LL & Goldman LR. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and neonatal thyroid hormone levels. Environmental Health Perspectives 2008 116 1376-1382. (https://doi.org/10.1289/ehp.11379)
Brucker-Davis F, Ferrari P, Boda-Buccino M, Wagner-Mahler K, Pacini P, Gal J, Azuar P & Fenichel P. Cord blood thyroid tests in boys born with and without cryptorchidism: correlations with birth parameters and in utero xenobiotics exposure. Thyroid 2011 21 1133-1141. (https://doi.org/10.1089/thy.2010.0459)
Dallaire R, Muckle G, Dewailly E, Jacobson SW, Jacobson JL, Sandanger TM, Sandau CD & Ayotte P. Thyroid hormone levels of pregnant inuit women and their infants exposed to environmental contaminants. Environmental Health Perspectives 2009 117 1014-1020. (https://doi.org/10.1289/ehp.0800219)
Darnerud PO, Lignell S, Glynn A, Aune M, Törnkvist A & Stridsberg M. POP levels in breast milk and maternal serum and thyroid hormone levels in mother-child pairs from Uppsala, Sweden. Environment International 2010 36 180-187. (https://doi.org/10.1016/j.envint.2009.11.001)
Leijs MM, ten Tusscher GW, Olie K, van Teunenbroek T, van Aalderen WM, de Voogt P, Vulsma T, Bartonova A, Krayer von Krauss M, Mosoiu C, et al. Thyroid hormone metabolism and environmental chemical exposure. Environmental Health 2012 11. S10. (https://doi.org/10.1186/1476-069X-11-S1-S10)
Grimm FA, Lehmler HJ, He X, Robertson LW & Duffel MW. Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environmental Health Perspectives 2013 121 657-662. (https://doi.org/10.1289/ehp.1206198)
Álvarez-Pedrerol M, Ribas-Fitó N, Torrent M, Carrizo D, Garcia-Esteban R, Grimalt JO & Sunyer J. Thyroid disruption at birth due to prenatal exposure to β-hexachlorocyclohexane. Environment International 2008 34 737-740. (https://doi.org/10.1016/j.envint.2007.12.001)
Hisada A, Shimodaira K, Okai T, Watanabe K, Takemori H, Takasuga T, Koyama M, Watanabe N, Suzuki E, Shirakawa M, et al. Associations between levels of hydroxylated PCBs and PCBs in serum of pregnant women and blood thyroid hormone levels and body size of neonates. International Journal of Hygiene and Environmental Health 2014 217 546-553. (https://doi.org/10.1016/j.ijheh.2013.10.004)
De Cock M, de Boer MR, Govarts E, Iszatt N, Palkovicova L, Lamoree MH, Schoeters G, Eggesbø M, Trnovec T, Legler J, et al. Thyroid-stimulating hormone levels in newborns and early life exposure to endocrine-disrupting chemicals: analysis of three European mother-child cohorts. Pediatric Research 2017 82 429-437. (https://doi.org/10.1038/pr.2017.50)
Crofton KM, Craft ES, Hedge JM, Gennings C, Simmons JE, Carchman RA, Carter WH Jr & DeVito MJ. Thyroid-hormonedisrupting chemicals: evidence for dose-dependent additivity or synergism. Environmental Health Perspectives 2005 113 1549-1554. (https://doi.org/10.1289/ehp.8195)
Katarzyńska D, Hrabia A, Kowalik K & Sechman A. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland. Environmental Toxicology and Pharmacology 2015 39 496-503. (https://doi.org/10.1016/j.etap.2015.01.016)
Ahmed RG. Early weaning PCB95 exposure alters the neonatal endocrine system: thyroid adipokine dysfunction. Journal of Endocrinology 2013 219 205-215. (https://doi.org/10.1530/JOE-13-0302)
Meerts IATM. Developmental exposure to 4-hydroxy-2,3,3′,4′,5-pentachlorobiphenyl (4-OH-CB107): long-term effects on brain development, behavior, and brain stem auditory evoked potentials in rats. Toxicological Sciences 2004 82 207-218. (https://doi.org/10.1093/toxsci/kfh252)
Reilly MP, Weeks CD, Topper VY, Thompson LM, Crews D & Gore AC. The effects of prenatal PCBs on adult social behavior in rats. Hormones and Behavior 2015 73 47-55. (https://doi.org/10.1016/j.yhbeh.2015.06.002)
Gutleb AC, Cenijn P, Velzen Mv, Lie E, Ropstad E, Skaare JU, Malmberg T, Bergman A, Gabrielsen GW & Legler J. In vitro assay shows that PCB metabolites completely saturate thyroid hormone transport capacity in blood of wild polar bears (Ursus maritimus). Environmental Science and Technology 2010 44 3149-3154. (https://doi.org/10.1021/es903029j)
Yang H, Chen H, Guo H, Li W, Tang J, Xu B, Sun M, Ding G, Jiang L, Cui D, Zheng X, et al. Molecular mechanisms of 2,3′,4,4′,5-pentachlorobiphenyl-induced thyroid dysfunction in FRTL-5 cells. PLoS ONE 2015 10 e0120133. (https://doi.org/10.1371/journal.pone.0120133)
Guo H, Yang H, Chen H, Li W, Tang J, Cheng P, Xie Y, Liu Y, Ding G, Cui D, et al. Molecular mechanisms of human thyrocyte dysfunction induced by low concentrations of polychlorinated biphenyl 118 through the Akt/FoxO3a/NIS pathway. Journal of Applied Toxicology 2015 35 992-998. (https://doi.org/10.1002/jat.3032)
Xu B, Yang H, Sun M, Chen H, Jiang L, Zheng X, Ding G, Liu Y, Sheng Y, Cui D, et al. 2,3′,4,4′,5-pentachlorobiphenyl induces inflammatory responses in the thyroid through JNK and Aryl hydrocarbon receptor-mediated pathway. Toxicological Sciences 2016 149 300-311. (https://doi.org/10.1093/toxsci/kfv235)
Ekuase EJ, Liu Y, Lehmler HJ, Robertson LW & Duffel MW. Structureactivity relationships for hydroxylated polychlorinated biphenyls as inhibitors of the sulfation of dehydroepiandrosterone catalyzed by human hydroxysteroid sulfotransferase SULT2A 1. Chemical Research in Toxicology 2011 24 1720-1728. (https://doi.org/10.1021/tx200260h)
Soechitram SD, Berghuis SA, Visser TJ & Sauer PJJ. Polychlorinated biphenyl exposure and deiodinase activity in young infants. Science of the Total Environment 2017 574 1117-1124. (https://doi.org/10.1016/j.scitotenv.2016.09.098)
Dickerson SM, Cunningham SL, Patisaul HB, Woller MJ & Gore AC. Endocrine disruption of brain sexual differentiation by developmental PCB exposure. Endocrinology 2011 152 581-594. (https://doi.org/10.1210/en.2010-1103)
Walker DM, Goetz BM & Gore AC. Dynamic postnatal developmental and sex-specific neuroendocrine effects of prenatal polychlorinated biphenyls in rats. Molecular Endocrinology 2014 28 99-115. (https://doi.org/10.1210/me.2013-1270)
deCastro BR, Korrick SA, Spengler JD & Soto AM. Estrogenic activity of polychlorinated biphenyls present in human tissue and the environment. Environmental Science and Technology 2006 40 2819-2825. (https://doi.org/10.1021/es051667u)
Zhang Q, Lu M, Wang C, Du J, Zhou P & Zhao M. Characterization of estrogen receptor α activities in polychlorinated biphenyls by in vitro dual-luciferase reporter gene assay. Environmental Pollution 2014 189 169-175. (https://doi.org/10.1016/j.envpol.2014.03.001)
Hamers T, Kamstra JH, Cenijn PH, Pencikova K, Palkova L, Simeckova P, Vondracek J, Andersson PL, Stenberg M & Machala M. In vitro toxicity profiling of ultrapure non-dioxinlike polychlorinated biphenyl congeners and their relative toxic contribution to PCB mixtures in humans. Toxicological Sciences 2011 121 88-100. (https://doi.org/10.1093/toxsci/kfr043)
Flor S, He X, Lehmler HJ & Ludewig G. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells. Environmental Science and Pollution Research 2016 23 2186-2200. (https://doi.org/10.1007/s11356-015-5142-y)
Lyche JL, Rosseland C, Berge G & Polder A. Human health risk associated with brominated flame-retardants (BFRs). Environment International 2015 74 170-180. (https://doi.org/10.1016/j.envint.2014.09.006)
Law RJ, Covaci A, Harrad S, Herzke D, Abdallah MA, Fernie K, Toms LM & Takigami H. Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012. Environment International 2014 65 147-158. (https://doi.org/10.1016/j.envint.2014.01.006)
Fliedner A, Lohmann N, Rüdel H, Teubner D, Wellmitz J & Koschorreck J. Current levels and trends of selected EU Water Framework Directive priority substances in freshwater fish from the German environmental specimen bank. Environmental Pollution 2016 216 866-876. (https://doi.org/10.1016/j.envpol.2016.06.060)
Sjödin A, Jones RS, Caudill SP, Wong LY, Turner WE & Calafat AM. Polybrominated diphenyl ethers, polychlorinated biphenyls, and persistent pesticides in serum from the national health and nutrition examination survey: 2003-2008. Environmental Science and Technology 2014 48 753-760.
Vizcaino E, Grimalt JO, Fernández-Somoano A & Tardon A. Transport of persistent organic pollutants across the human placenta. Environment International 2014 65 107-115. (https://doi.org/10.1016/j.envint.2014.01.004)
Choi G, Kim S, Kim S, Kim S, Choi Y, Kim HJ, Lee JJ, Kim SY, Lee S, Moon HB, et al. Occurrences of major polybrominated diphenyl ethers (PBDEs) in maternal and fetal cord blood sera in Korea. Science of the Total Environment 2014 491-492 219-226. (https://doi.org/10.1016/j.scitotenv.2014.02.071)
Gómara B, Herrero L, Ramos JJ, Mateo JR, Fernández MA, García JF & González MJ. Distribution of polybrominated diphenyl ethers in human umbilical cord serum, paternal serum, maternal serum, placentas, and breast milk from madrid population, Spain. Environmental Science and Technology 2007 41 6961-6968.
Zhang H, Yolton K, Webster GM, Sjödin A, Calafat AM, Dietrich KN, Xu Y, Xie C, Braun JM, Lanphear BP, et al. Prenatal PBDE and PCB exposures and reading, cognition, and externalizing behavior in children. Environmental Health Perspectives 2017 125 746-752. (https://doi.org/10.1289/EHP478)
Braun JM, Yolton K, Stacy SL, Erar B, Papandonatos GD, Bellinger DC, Lanphear BP & Chen A. Prenatal environmental chemical exposures and longitudinal patterns of child neurobehavior. Neurotoxicology 2017 62 192-199. (https://doi.org/10.1016/j.neuro.2017.07.027)
Vuong AM, Braun JM, Yolton K, Xie C, Webster GM, Sjödin A, Dietrich KN, Lanphear BP & Chen A. Prenatal and postnatal polybrominated diphenyl ether exposure and visual spatial abilities in children. Environmental Research 2017 153 83-92. (https://doi.org/10.1016/j.envres.2016.11.020)
Sagiv SK, Kogut K, Gaspar FW, Gunier RB, Harley KG, Parra K, Villaseñor D, Bradman A, Holland N & Eskenazi B. Prenatal and childhood polybrominated diphenyl ether (PBDE) exposure and attention and executive function at 9-12 years of age. Neurotoxicology and Teratology 52 2015 151-161. (https://doi.org/10.1016/j.ntt.2015.08.001)
Chen A, Yolton K, Rauch SA, Webster GM, Hornung R, Sjödin A, Dietrich KN & Lanphear BP. Prenatal polybrominated diphenyl ether exposures and neurodevelopment in U.S. children through 5 years of age: the home study. Environmental Health Perspectives 2014 122 856-862. (https://doi.org/10.1289/ehp.1307562)
Eskenazi B, Chevrier J, Rauch SA, Kogut K, Harley KG, Johnson C, Trujillo C, Sjödin A & Bradman A. In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study. Environmental Health Perspectives 2013 121 257-262. (https://doi.org/10.1289/ehp.121-A257)
Cowell WJ, Lederman SA, Sjödin A, Jones R, Wang S, Perera FP, Wang R, Rauh VA & Herbstman JB. Prenatal exposure to polybrominated diphenyl ethers and child attention problems at 3-7 years. Neurotoxicology and Teratology 2015 52 143-150. (https://doi.org/10.1016/j.ntt.2015.08.009)
Ding G, Yu J, Cui C, Chen L, Gao Y, Wang C, Zhou Y & Tian Y. Association between prenatal exposure to polybrominated diphenyl ethers and young children’s neurodevelopment in China. Environmental Research 2015 142 104-111. (https://doi.org/10.1016/j.envres.2015.06.008)
Herbstman JB & Mall JK. Developmental exposure to polybrominated diphenyl ethers and neurodevelopment. Current Environmental Health Reports 2014 1 101-112. (https://doi.org/10.1007/s40572-014-0010-3)
Vuong AM, Yolton K, Poston KL, Xie C, Webster GM, Sjödin A, Braun JM, Dietrich KN, Lanphear BP & Chen A. Childhood polybrominated diphenyl ether (PBDE) exposure and executive function in children in the HOME Study. International Journal of Hygiene and Environmental Health 2017 221 87-94. (https://doi.org/10.1016/j.ijheh.2017.10.006)
Naert C, Van Peteghem C, Kupper J, Jenni L & Naegeli H. Distribution of polychlorinated biphenyls and polybrominated diphenyl ethers in birds of prey from Switzerland. Chemosphere 2007 68 977-987. (https://doi.org/10.1016/j.chemosphere.2007.01.009)
Zhang H, Li X, Nie J & Niu Q. Lactation exposure to BDE-153 damages learning and memory, disrupts spontaneous behavior and induces hippocampus neuron death in adult rats. Brain Research 2013 1517 44-56. (https://doi.org/10.1016/j.brainres.2013.04.014)
Gee JR & Moser VC. Acute postnatal exposure to brominated diphenylether 47 delays neuromotor ontogeny and alters motor activity in mice. Neurotoxicology and Teratology 2008 30 79-87.
Eriksson P, Jakobsson E & Fredriksson A. Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environmental Health Perspectives 2001 109 903-908. (https://doi.org/10.1289/ehp.01109903)
Branchi I, Capone F, Alleva E & Costa LG. Polybrominated diphenyl ethers: neurobehavioral effects following developmental exposure. Neurotoxicology 2003 24 449-462. (https://doi.org/10.1016/S0161-813X(03)00020-2)
Gassmann K, Schreiber T, Dingemans MM, Krause G, Roderigo C, Giersiefer S, Schuwald J, Moors M, Unfried K, Bergman Å, et al. BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms. Archives of Toxicology 2014 88 1537-1548. (https://doi.org/10.1007/s00204-014-1217-7)
Costa LG, de Laat R, Tagliaferri S & Pellacani C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicology Letters 2014 230 282-294. (https://doi.org/10.1016/j.toxlet.2013.11.011)
Dingemans MML, Ramakers GM, Gardoni F, van Kleef RG, Bergman A, Di Luca M, van den Berg M, Westerink RH & Vijverberg HP. Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus. Environmental Health Perspectives 2007 115 865-870. (https://doi.org/10.1289/ehp.9860)
Bradner JM, Suragh TA & Caudle WM. Alterations to the circuitry of the frontal cortex following exposure to the polybrominated diphenyl ether mixture, DE-71. Toxicology 2013 312 48-55. (https://doi.org/10.1016/j.tox.2013.07.015)
Bradner JM, Suragh TA, Wilson WW, Lazo CR, Stout KA, Kim HM, Wang MZ, Walker DI, Pennell KD, Richardson JR, et al. Exposure to the polybrominated diphenyl ether mixture DE-71 damages the nigrostriatal dopamine system: role of dopamine handling in neurotoxicity. Experimental Neurology 2013 241 138-147. (https://doi.org/10.1016/j.expneurol.2012.12.013)
Jacobson MH, Barr DB, Marcus M, Muir AB, Lyles RH, Howards PP, Pardo L & Darrow LA. Serum polybrominated diphenyl ether concentrations and thyroid function in young children. Environmental Research 2016 149 222-230. (https://doi.org/10.1016/j.envres.2016.05.022)
Xu X, Liu J, Zeng X, Lu F, Chen A & Huo X. Elevated serum polybrominated diphenyl ethers and alteration of thyroid hormones in children from Guiyu, China. PLoS ONE 2014 9 e113699. (https://doi.org/10.1371/journal.pone.0113699)
Makey CM, McClean MD, Braverman LE, Pearce EN, He XM, Sjödin A, Weinberg JM & Webster TF. Polybrominated diphenyl ether exposure and thyroid function tests in North American adults. Environmental Health Perspectives 2016 124 420-425. (https://doi.org/10.1289/ehp.1509755)
Kiciński M, Viaene MK, Den Hond E, Schoeters G, Covaci A, Dirtu AC, Nelen V, Bruckers L, Croes K, Sioen I, et al. Neurobehavioral function and low-level exposure to brominated flame retardants in adolescents: a cross-sectional study. Environmental Health 2012 11 86. (https://doi.org/10.1186/1476-069X-11-86)
GuanGen H, Ding G, Lou X, Wang X, Han J, Shen H, Zhou Y & Du L. Correlations of PCBs, DIOXIN, and PBDE with TSH in children’s blood in areas of computer E-waste recycling*. Biomedical and Environmental Sciences 2011 24 112-116. (https://doi.org/10.3967/0895-3988.2011.02.004)
Abdelouahab N, Langlois MF, Lavoie L, Corbin F, Pasquier JC & Takser L. Maternal and cord-blood thyroid hormone levels and exposure to polybrominated diphenyl ethers and polychlorinated biphenyls during early pregnancy. American Journal of Epidemiology 2013 178 701-713. (https://doi.org/10.1093/aje/kwt141)
Zhao X, Wang H, Li J, Shan Z, Teng W & Teng X. The correlation between polybrominated diphenyl ethers (PBDES) and thyroid hormones in the general population: a meta-analysis. PLoS ONE 2015 10 e0126989. (https://doi.org/10.1371/journal.pone.0126989)
Lee E, Kim TH, Choi JS, Nabanata P, Kim NY, Ahn MY, Jung KK, Kang IH, Kim TS, Kwack SJ, et al. Evaluation of liver and thyroid toxicity in Sprague-Dawley rats after exposure to polybrominated diphenyl ether BDE-209. Journal of Toxicological Sciences 2010 35 535-545. (https://doi.org/10.2131/jts.35.535)
Miller VM, Sanchez-Morrissey S, Brosch KO & Seegal RF. Developmental coexposure to polychlorinated biphenyls and polybrominated diphenyl ethers has additive effects on circulating thyroxine levels in rats. Toxicological Sciences 2012 127 76-83. (https://doi.org/10.1093/toxsci/kfs089)
Kodavanti PRS, Coburn CG, Moser VC, MacPhail RC, Fenton SE, Stoker TE, Rayner JL, Kannan K & Birnbaum LS. Developmental exposure to a commercial PBDE Mixture, DE-71: neurobehavioral, hormonal, and reproductive effects. Toxicological Sciences 2010 116 297-312. (https://doi.org/10.1093/toxsci/kfq105)
Richardson VM, Staskal DF, Ross DG, Diliberto JJ, DeVito MJ & Birnbaum LS. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polybrominated diphenyl ether congener. Toxicology and Applied Pharmacology 2008 226 244-250. (https://doi.org/10.1016/j.taap.2007.09.015)
Ren XM, Guo LH, Gao Y, Zhang BT & Wan B. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination. Toxicology and Applied Pharmacology 2013 268 256-263. (https://doi.org/10.1016/j.taap.2013.01.026)
Li F, Xie Q, Li X, Li N, Chi P, Chen J, Wang Z & Hao C. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: in vitro and in silico investigations. Environmental Health Perspectives 2010 118 602-606. (https://doi.org/10.1289/ehp.0901457)
Kitamura S, Jinno N, Suzuki T, Sugihara K, Ohta S, Kuroki H & Fujimoto N. Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture. Toxicology 2005 208 377-387. (https://doi.org/10.1016/j.tox.2004.11.037)
Schriks M, Roessig JM, Murk AJ & Furlow JD. Thyroid hormone receptor isoform selectivity of thyroid hormone disrupting compounds quantified with an in vitro reporter gene assay. Environmental Toxicology and Pharmacology 2007 23 302-307. (https://doi.org/10.1016/j.etap.2006.11.007)
Kojima H, Takeuchi S, Uramaru N, Sugihara K, Yoshida T & Kitamura S. Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells. Environmental Health Perspectives 2009 117 1210-1218. (https://doi.org/10.1289/ehp.0900753)
Ibhazehiebo K, Iwasaki T, Kimura-Kuroda J, Miyazaki W, Shimokawa N & Koibuchi N. Disruption of thyroid hormone receptor-mediated transcription and thyroid hormone-induced purkinje cell dendrite arborization by Polybrominated diphenyl ethers. Environmental Health Perspectives 2011 119 168-175. (https://doi.org/10.1289/ehp.1002065)
Dach K, Bendt F, Huebenthal U, Giersiefer S, Lein PJ, Heuer H & Fritsche E. BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action. Scientific Reports 2017 7 44861. (https://doi.org/10.1038/srep44861)
Macaulay LJ, Chen A, Rock KD, Dishaw LV, Dong W, Hinton DE & Stapleton HM. Developmental toxicity of the PBDE metabolite 6-OH-BDE-47 in zebrafish and the potential role of thyroid receptor β. Aquatic Toxicology 2015 168 38-47. (https://doi.org/10.1016/j.aquatox.2015.09.007)
Ren XM & Guo LH. Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe. Environmental Science and Technology 2012 46 4633-4640. (https://doi.org/10.1021/es2046074)
Cao J, Lin Y, Guo LH, Zhang AQ, Wei Y & Yang Y. Structurebased investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins. Toxicology 2010 277 20-28. (https://doi.org/10.1016/j.tox.2010.08.012)
Roberts SC, Bianco AC & Stapleton HM. Disruption of type 2 iodothyronine deiodinase activity in cultured human glial cells by polybrominated diphenyl ethers. Chemical Research in Toxicology 2015 28 1265-1274. (https://doi.org/10.1021/acs.chemrestox.5b00072)
Marsan ES & Bayse CA. Halogen-bonding interactions of polybrominated diphenyl ethers and thyroid hormone derivatives: a potential mechanism for the inhibition of iodothyronine deiodinase. Chemistry 2017 23 6625-6633. (https://doi.org/10.1002/chem.201700407)
Bansal R, Tighe D, Danai A, Rawn DF, Gaertner DW, Arnold DL, Gilbert ME & Zoeller RT. Polybrominated diphenyl ether (DE-71) interferes with thyroid hormone action independent of effects on circulating levels of thyroid hormone in male rats. Endocrinology 2014 155 4104-4112. (https://doi.org/10.1210/en.2014-1154)
Dong W, Macaulay LJ, Kwok KWH, Hinton DE & Stapleton HM. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages. Aquatic Toxicology 2013 132-133 190-199. (https://doi.org/10.1016/j.aquatox.2013.02.008)
Geiss O, Tirendi S, Barrero-Moreno J & Kotzias D. Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars. Environment International 2009 35 1188-1195. (https://doi.org/10.1016/j.envint.2009.07.016)
Eckert E, Münch F, Göen T, Purbojo A, Müller J & Cesnjevar R. Comparative study on the migration of di-2-ethylhexyl phthalate (DEHP) and tri-2-ethylhexyl trimellitate (TOTM) into blood from PVC tubing material of a heart-lung machine. Chemosphere 2016 145 10-16. (https://doi.org/10.1016/j.chemosphere.2015.11.067)
EFSA. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to a 5th list of substances for food contact materials. EFSA Journal 2004 2 109. (https://doi.org/10.2903/j.efsa.2004.109)
National Industrial Chemicals Notification and Assessment Scheme (NICNAS). (STD/1259) 1,2-Cyclohexanedicarboxylic acid, 1,2-diisononyl ester (’Hexamoll DINCH’). Sydney, Australia: NICNAS, 2012.
Blount BC, Silva MJ, Caudill SP, Needham LL, Pirkle JL, Sampson EJ, Lucier GW, Jackson RJ & Brock JW. Levels of seven urinary phthalate metabolites in a human reference population. Environmental Health Perspectives 2000 108 979-982. (https://doi.org/10.1289/ehp.00108979)
Adibi JJ, Perera FP, Jedrychowski W, Camann DE, Barr D, Jacek R & Whyatt RM. Prenatal exposures to Phthalates among women in New York and Krakow, Poland. Environmental Health Perspectives 2003 111 1719-1722. (https://doi.org/10.1289/ehp.6235)
Latini G, De Felice C, Presta G, Del Vecchio A, Paris I, Ruggieri F & Mazzeo P. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environmental Health Perspectives 2003 111 1783-1785. (https://doi.org/10.1289/ehp.6202)
Silva MJ, Reidy JA, Herbert AR, Preau JL Jr, Needham LL & Calafat AM. Detection of phthalate metabolites in human amniotic fluid. Bulletin of Environmental Contamination and Toxicology 2004 72 1226-1231.
Calafat AM, Brock JW, Silva MJ, Gray LE Jr, Reidy JA, Barr DB & Needham LL. Urinary and amniotic fluid levels of phthalate monoesters in rats after the oral administration of di(2-ethylhexyl) phthalate and di-n-butyl phthalate. Toxicology 2006 217 22-30. (https://doi.org/10.1016/j.tox.2005.08.013)
Kim Y, Ha EH, Kim EJ, Park H, Ha M, Kim JH, Hong YC, Chang N & Kim BN. Prenatal exposure to phthalates and infant development at 6 months: prospective mothers and children’s environmental health (MOCEH) study. Environmental Health Perspectives 2011 119 1495-1500. (https://doi.org/10.1289/ehp.1003178)
Polanska K, Ligocka D, Sobala W & Hanke W. Phthalate exposure and child development: the Polish Mother and Child Cohort Study. Early Human Development 2014 90 477-485. (https://doi.org/10.1016/j.earlhumdev.2014.06.006)
Téllez-Rojo MM, Cantoral A, Cantonwine DE, Schnaas L, Peterson K, Hu H & Meeker JD. Prenatal urinary phthalate metabolites levels and neurodevelopment in children at two and three years of age. Science of the Total Environment 2013 461-462 386-390. (https://doi.org/10.1016/j.scitotenv.2013.05.021)
Whyatt RM, Liu X, Rauh VA, Calafat AM, Just AC, Hoepner L, Diaz D, Quinn J, Adibi J, Perera FP, et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environmental Health Perspectives 2012 120 290-295. (https://doi.org/10.1289/ehp.1103705)
Minatoya M, Naka Jima S, Sasaki S, Araki A, Miyashita C, Ikeno T, Nakajima T, Goto Y & Kishi R. Effects of prenatal phthalate exposure on thyroid hormone levels, mental and psychomotor development of infants: the Hokkaido Study on Environment and Children’s Health. Science of the Total Environment 2016 565 1037-1043. (https://doi.org/10.1016/j.scitotenv.2016.05.098)
Swan SH, Liu F, Hines M, Kruse RL, Wang C, Redmon JB, Sparks A & Weiss B. Prenatal phthalate exposure and reduced masculine play in boys. International Journal of Andrology 2010 33 259-267. (https://doi.org/10.1111/j.1365-2605.2009.01019.x)
Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, Calafat AM & Wolff MS. Endocrine disruptors and childhood social impairment. Neurotoxicology 2011 32 261-267. (https://doi.org/10.1016/j.neuro.2010.12.009)
Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW, Yoo HJ, Cho IH & Kim HW. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environmental Health Perspectives 2010 118 1027-1032. (https://doi.org/10.1289/ehp.0901376)
Chopra V, Harley K, Lahiff M & Eskenazi B. Association between phthalates and attention deficit disorder and learning disability in U.S. children, 6-15 years. Environmental Research 2014 128 64-69. (https://doi.org/10.1016/j.envres.2013.10.004)
Huang PC, Kuo PL, Guo YL, Liao PC & Lee CC. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Human Reproduction 2007 22 2715-2722. (https://doi.org/10.1093/humrep/dem205)
Boas M, Frederiksen H, Feldt-Rasmussen U, Skakkebæk NE, Hegedüs L, Hilsted L, Juul A & Main KM. Childhood exposure to phthalates: associations with thyroid function, insulin-like growth factor I, and growth. Environmental Health Perspectives 2010 118 1458-1464. (https://doi.org/10.1289/ehp.0901331)
Huang PC, Tsai CH, Liang WY, Li SS, Huang HB & Kuo PL. Early phthalates exposure in pregnant women is associated with alteration of thyroid hormones. PLoS ONE 2016 11 e0159398. (https://doi.org/10.1371/journal.pone.0159398)
Arbuckle TE, Davis K, Marro L, Fisher M, Legrand M, LeBlanc A, Gaudreau E, Foster WG, Choeurng V, Fraser WD,et al. Phthalate and bisphenol A exposure among pregnant women in Canada -results from the MIREC study. Environment International 2014 68 55-65. (https://doi.org/10.1016/j.envint.2014.02.010)
Cantonwine DE, Cordero JF, Rivera-González LO, Anzalota Del Toro LV, Ferguson KK, Mukherjee B, Calafat AM, Crespo N, Jiménez-Vélez B, Padilla IY, et al. Urinary phthalate metabolite concentrations among pregnant women in Northern Puerto Rico: distribution, temporal variability, and predictors. Environment International 2014 62 1-11. (https://doi.org/10.1016/j.envint.2013.09.014)
Swan SH, Sathyanarayana S, Barrett ES, Janssen S, Liu F, Nguyen RH, Redmon JB & TIDES Study Team. First trimester phthalate exposure and anogenital distance in newborns. Human Reproduction 2015 30 963-972. (https://doi.org/10.1093/humrep/deu363)
Meeker JD, Calafat AM & Hauser R. Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environmental Health Perspectives 2007 115 1029-1034. (https://doi.org/10.1289/ehp.9852)
Wu MT, Wu CF, Chen BH, Chen EK, Chen YL, Shiea J, Lee WT, Chao MC & Wu JR. Intake of phthalate-tainted foods alters thyroid functions in Taiwanese children. PLoS ONE 2013 8 e55005. (https://doi.org/10.1371/journal.pone.0055005)
De Cock M, De Boer MR, Lamoree M, Legler J & Van De Bor M. Prenatal exposure to endocrine disrupting chemicals (EDCS) in relation to thyroid hormone levels in infants. Archives of Disease in Childhood 2014 99. A362.
Breous E, Wenzel A & Loos U. The promoter of the human sodium/ iodide symporter responds to certain phthalate plasticisers. in Molecular and Cellular Endocrinology 2005 244 75-78. (https://doi.org/10.1016/j.mce.2005.06.009)
Shen O, Du G, Sun H, Wu W, Jiang Y, Song L & Wang X. Comparison of in vitro hormone activities of selected phthalates using reporter gene assays. Toxicology Letters 2009 191 9-14. (https://doi.org/10.1016/j.toxlet.2009.07.019)
Zhai W, Huang Z, Chen L, Feng C, Li B & Li T. Thyroid endocrine disruption in zebrafish larvae after exposure to mono-(2-ethylhexyl) phthalate (MEHP). PLoS ONE 2014 9 e92465. (https://doi.org/10.1371/journal.pone.0092465)
Liu C, Zhao L, Wei L & Li L. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats. Environmental Science and Pollution Research 2015 22 12711-12719. (https://doi.org/10.1007/s11356-015-4567-7)
Houde M, Martin JW, Letcher RJ, Solomon KR & Muir DCG. Biological monitoring of polyfluoroalkyl substances: a review. Environmental Science and Technology 2006 40 3463-3473. (https://doi.org/10.1021/es052580b)
Spliethoff HM, Tao L, Shaver SM, Aldous KM, Pass KA, Kannan K & Eadon GA. Use of newborn screening program blood spots for exposure assessment: declining levels of perfluorinated compounds in New York State infants. Environmental Science and Technology 2008 42 5361-5367. (https://doi.org/10.1021/es8006244)
Olsen GW, Mair DC, Church TR, Ellefson ME, Reagen WK, Boyd TM, Herron RM, Medhdizadehkashi Z, Nobiletti JB, Rios JA, et al. Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American red cross adult blood donors, 2000-2006. Environmental Science and Technology 2008 42 4989-4995. (https://doi.org/10.1021/es800071x)
Kato K, Wong LY, Jia LT, Kuklenyik Z & Calafat AM. Trends in exposure to polyfluoroalkyl chemicals in the U.S. population: 1999-2008. Environmental Science and Technology 2011 45 8037-8045. (https://doi.org/10.1021/es1043613)
Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL & Zobel LR. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental Health Perspectives 2007 115 1298-1305. (https://doi.org/10.1289/ehp.10009)
Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, Lohmann R, Carignan CC, Blum A, Balan SA, et al. Detection of Poly-and Perfluoroalkyl Substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environmental Science and Technology Letters 2016 3 344-350. (https://doi.org/10.1021/acs.estlett.6b00260)
Johansson N, Fredriksson A & Eriksson P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology 2008 29 160-169. (https://doi.org/10.1016/j.neuro.2007.10.008)
Slotkin TA, MacKillop EA, Meinick RL, Thayer KA & Seidler FJ. Developmental neurotoxicity of perfluorinated chemicals modeled in vitro. Environmental Health Perspectives 2008 116 716-722. (https://doi.org/10.1289/ehp.11253)
Gizer IR, Ficks C & Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Human Genetics 2009 126 51-90. (https://doi.org/10.1007/s00439-009-0694-x)
Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA & Sklar P. Molecular genetics of attention-deficit/ hyperactivity disorder. Biological Psychiatry 2005 57 1313-1323. (https://doi.org/10.1016/j.biopsych.2004.11.024)
Hoffman K, Webster TF, Weisskopf MG, Weinberg J & Vieira VM. Exposure to polyfluoroalkyl chemicals and attention deficit/ hyperactivity disorder in U.S. children 12-15 years of age. Environmental Health Perspectives 2010 118 1762-1767. (https://doi.org/10.1289/ehp.1001898)
Stein CR & Savitz DA. Serum perfluorinated compound concentration and attention deficit/hyperactivity disorder in children 5-18 years of age. Environmental Health Perspectives 2011 119 1466-1471. (https://doi.org/10.1289/ehp.1003538)
Gump BB, Wu Q, Dumas AK & Kannan K. Perfluorochemical (PFC) exposure in children: associations with impaired response inhibition Environmental Science and Technology 2011 45 8151-8159. (https://doi.org/10.1021/es103712g)
Fei C, McLaughlin JK, Lipworth L & Olsen J. Prenatal exposure to perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) and maternally reported developmental milestones in infancy. Environmental Health Perspectives 2008 116 1391-1395. (https://doi.org/10.1289/ehp.11277)
Fei C & Olsen J. Prenatal exposure to perfluorinated chemicals and behavioral or coordination problems at age 7 years. Environmental Health Perspectives 2011 119 573-578. (https://doi.org/10.1289/ehp.1002026)
Endendijk JJ, Wijnen HAA, Pop VJM & van Baar AL. Maternal thyroid hormone trajectories during pregnancy and child behavioral problems. Hormones and Behavior 2017 94 84-92. (https://doi.org/10.1016/j.yhbeh.2017.06.007)
Modesto T, Tiemeier H, Peeters RP, Jaddoe VW, Hofman A, Verhulst FC & Ghassabian A. Maternal mild thyroid hormone insufficiency in early pregnancy and attention-deficit/hyperactivity disorder symptoms in children. JAMA Pediatrics 2015 169 838-845. (https://doi.org/10.1001/jamapediatrics.2015.0498)
Hauser P, Zametkin AJ, Martinez P, Vitiello B, Matochik JA, Mixson AJ & Weintraub BD. Attention deficit-hyperactivity disorder in people with generalized resistance to thyroid hormone. New England Journal of Medicine 1993 328 997-1001. (https://doi.org/10.1056/NEJM199304083281403)
Pearce EN. Maternal hypothyroxinemia in pregnancy is associated with increased risk for ADHD symptoms in children. Clinical Thyroidology 2015 27 212-214. (https://doi.org/10.1089/ct.2015;27.212-214)
Olsen GW & Zobel LR. Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. International Archives of Occupational and Environmental Health 2007 81 231-246. (https://doi.org/10.1007/s00420-007-0213-0)
Melzer D, Rice N, Depledge MH, Henley WE & Galloway TS. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environmental Health Perspectives 2010 118 686-692. (https://doi.org/10.1289/ehp.0901584)
Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, Lau CS, Singh RJ, Wallace KB & Butenhoff JL. Negative bias from analog methods used in the analysis of free thyroxine in rat serum containing perfluorooctanesulfonate (PFOS). Toxicology 2007 234 21-33. (https://doi.org/10.1016/j.tox.2007.01.020)
Martin MT, Brennan RJ, Hu W, Ayanoglu E, Lau C, Ren H, Wood CR, Corton JC, Kavlock RJ & Dix DJ. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity. Toxicological Sciences 2007 97 595-613. (https://doi.org/10.1093/toxsci/kfm065)
Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, Butenhoff JL, Stevenson LA & Lau C. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicological Sciences 2003 74 369-381. (https://doi.org/10.1093/toxsci/kfg121)
Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, Butenhoff JL & Stevenson LA. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicological Sciences 2003 74 382-392. (https://doi.org/10.1093/toxsci/kfg122)
Yu WG, Liu W, Jin Y-H, Liu X-H, Wang F-Q, Liu L & Nakayama SF. Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development: a cross-foster study on chemical burden and thyroid hormone system. Environmental Science and Technology 2009 43 8416-8422. (https://doi.org/10.1021/es901602d)
Luebker DJ, York RG, Hansen KJ, Moore JA & Butenhoff JL. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharamacokinetic parameters. Toxicology 2005 215 149-169. (https://doi.org/10.1016/j.tox.2005.07.019)
Weiss JM, Andersson PL, Lamoree MH, Leonards PE, van Leeuwen SP & Hamers T. Competitive binding of poly-and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicological Sciences 2009 109 206-216. (https://doi.org/10.1093/toxsci/kfp055)
Yu WG, Liu W & Jin YH. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism. Environmental Toxicology and Chemistry 2008 28 1. (https://doi.org/10.1897/08-345.1)
Delfosse V, Dendele B, Huet T, Grimaldi M, Boulahtouf A, Gerbal-Chaloin S, Beucher B, Roecklin D, Muller C, Rahmani R, et al. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nature Communications 2015 6 8089. (https://doi.org/10.1038/ncomms9089)
Silva E, Rajapakse N & Kortenkamp A. Something from ’nothing’ -eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environmental Science and Technology 2002 36 1751-1756. (https://doi.org/10.1021/es0101227)
Fini J-B, Mughal BB, Le Mével S, Leemans M, Lettmann M, Spirhanzlova P, Affaticati P, Jenett A & Demeneix BA. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos. Scientific Reports 2017 7 43786. (https://doi.org/10.1038/srep43786)
Birgersson L, Borbely G, Caporale N, Germain P-L, Leemans M, Rendel F, D’Agostino G, Bardini Bressan R, Cavallo F, Even Chorev N, et al. From cohorts to molecules: adverse impacts of endocrine disrupting mixtures. bioRxiv 2017 206664. (https://doi.org/10.1101/206664)