[en] We present high‐sensitivity Hubble Space Telescope (HST) Cosmic Origins Spectrograph and HST Space Telescope Imaging Spectrograph measurements of atmospheric OI 130.4‐nm and OI] 135.6‐nm emissions at Ganymede, which exhibit significant spatial and temporal variability. These observations represent the first observations of Ganymede using HST Cosmic Origins Spectrograph and of both the leading and trailing hemispheres within a single HST campaign, minimizing the potential influence of long‐term changes in the Jovian plasma sheet or in Ganymede's atmosphere on the comparison of the two hemispheres. The mean disk‐averaged OI] 135.6‐nm/OI 130.4‐nm observed intensity ratio was 2.72 ± 0.57 on the leading hemisphere and 1.42 ± 0.16 on the trailing hemisphere. The observed leading hemisphere ratios are consistent with an O2 atmosphere, but we show that an atomic oxygen component of ~10% is required to produce the observed trailing hemisphere ratios. The excess 130.4‐nm emission on the trailing hemisphere relative to that expected for an O2 atmosphere was ~11 R. The O column density required to produce this excess is determined based on previous estimates of the electron density and temperature at Ganymede and exceeds the limit for an optically thin atmosphere. The implication that the O atmosphere is optically thick may be investigated in future by observing Ganymede as it moves into eclipse or by determining the ratio of the individual components within the 130.4‐nm triplet.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Molyneux, P. M.; Southwest Research Institute
Nichols, J. D.; University of Leicester
Bannister, N. P.; University of Leicester
Bunce, E. J.; University of Leicester
Clarke, J. T.; Boston University
Cowley, S. W. H.; University of Leicester
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Milan, S. E.; University of Leicester
Paty, C.; Georgia Institute of Technology, Atlanta, GA, USA
Language :
English
Title :
Hubble Space Telescope Observations of Variations in Ganymede's Oxygen Atmosphere and Aurora
Bagenal, F., Sidrow, E., Wilson, R. J., Cassidy, T. A., Dols, V., Crary, F., et al. (2015). Plasma conditions at Europa's orbit. Icarus, 261, 1–13. https://doi.org/10.1016/j.icarus.2015.07.036
Barth, C. A. (1969). Planetary ultraviolet spectroscopy. Applied Optics, 8(7), 1295–1304. https://doi.org/10.1364/AO.8.001295
Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., McConnell, J. C., Smith, G. R., Holberg, J. B., et al. (1981). Overview of Voyager ultraviolet spectrometry results through Jupiter encounter. Journal of Geophysical Research, 86, 8259–8284. https://doi.org/10.1029/JA086iA10p08259
Calvin, W. M., Clark, R. N., Brown, R. H., & Spencer, J. R. (1995). Spectra of the icy Galilean satellites from 0.2 to 5 μm: A compilation, new observations, and a recent summary. Journal of Geophysical Research, 100, 19,041–19,048. https://doi.org/10.1029/94JE03349
Connerney, J. E. P., Acuna, M. H., Ness, N. F., & Satoh, T. (1998). New models of Jupiter's magnetic field constrained by the Io flux tube footprint. Journal of Geophysical Research, 103, 11,929–11,939. https://doi.org/10.1029/97JA03726
Cosby, P. C. (1993). Electron-impact dissociation of oxygen. Journal of Chemical Physics, 98(12), 9560–9569. https://doi.org/10.1063/1.464387
Cotton, D. M., Chakrabarti, S., & Gladstone, G. R. (1993). Optically thick cascade to the O I 3s 3S state in the Earth's thermosphere. Journal of Geophysical Research, 98, 21,643–21,650. https://doi.org/10.1029/93JA02266
Duling, S., Saur, J., & Wicht, J. (2014). Consistent boundary conditions at nonconducting surfaces of planetary bodies: Applications in a new Ganymede MHD model. Journal of Geophysical Research: Space Physics, 119, 4412–4440. https://doi.org/10.1002/2013JA019554
Eviatar, A., Strobel, D. F., Wolven, B. C., Feldman, P. D., McGrath, M. A., & Williams, D. J. (2001). Excitation of the Ganymede ultraviolet aurora. Astrophysical Journal, 555(2), 1013–1019. https://doi.org/10.1086/321510
Eviatar, A., Vasyliūnas, V. M., & Gurnett, D. A. (2001). The ionosphere of Ganymede. Planetary and Space Science, 49(3-4), 327–336. https://doi.org/10.1016/S0032-0633(00)00154-9
Feldman, P. D., McGrath, M. A., Strobel, D. F., Moos, H. W., Retherford, K. D., & Wolven, B. C. (2000). HST/STIS ultraviolet imaging of polar aurora on Ganymede. Astrophysical Journal, 535(2), 1085–1090. https://doi.org/10.1086/308889
Green, J. C., Froning, C. S., Osterman, S., Ebbets, D., Heap, S. H., Leitherer, C., et al. (2012). The Cosmic Origins Spectrograph. Astrophysical Journal, 744(1), 60. https://doi.org/10.1088/0004-637X/744/1/60
Gurnett, D. A., Kurth, W. S., Roux, A., Bolton, S. J., & Kennel, C. F. (1996). Evidence for a magnetosphere at Ganymede from plasma-wave observations by the Galileo spacecraft. Nature, 384(6609), 535–537. https://doi.org/10.1038/384535a0
Hall, D. T., Feldman, P. D., McGrath, M. A., & Strobel, D. F. (1998). The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophysical Journal, 499(1), 475–481. https://doi.org/10.1086/305604
Hall, D. T., Stobel, D. F., Feldman, P. D., McGrath, M. A., & Weaver, H. A. (1995). Detection of an oxygen atmosphere on Jupiter's moon Europa. Nature, 373(6516), 677–679. https://doi.org/10.1038/373677a0
Hendrix, A. R., Barth, C. A., & Hord, C. W. (1999). Ganymede's ozone-like absorber: Observations by the Galileo ultraviolet spectrometer. Journal of Geophysical Research, 104, 14,169–14,178. https://doi.org/10.1029/1999JE900001
Hess, S. L. G., Bonfond, B., Zarka, P., & Grodent, D. (2011). Model of the Jovian magnetic field topology constrained by the Io auroral emissions. Journal of Geophysical Research, 116, A05217. https://doi.org/10.1029/2010JA016262
Jia, X., Walker, R. J. K., Kivelson, M. G., Khurana, K., & Linker, J. A. (2009). Properties of Ganymede's magnetosphere inferred from improved three-dimensional MHD simulations. Journal of Geophysical Research, 114, A09209. https://doi.org/10.1029/2009JA014375
Jia, X., Walker, R. J., Kivelson, M. G., Khurana, K. K., & Linker, J. A. (2008). Three-dimensional MHD simulations of Ganymede's magnetosphere. Journal of Geophysical Research, 113, A06212. https://doi.org/10.1029/2007JA012748
Kanik, I., Noren, C., Makarov, O. P., Vattipalle, P., Ajello, J. M., & Shemansky, D. E. (2003). Electron impact dissociative excitation of O2: 2. Absolute emission and cross sections of the OI(130.4 nm) and OI(135.6 nm) lines. Journal of Geophysical Research, 108(E11), 5126. https://doi.org/10.1029/2000JE001423
Kivelson, M. G., Khurana, K. K., Coroniti, F. V., Joy, S., Russell, C. T., Walker, R. J., et al. (1997). The magnetic field and magnetosphere of Ganymede. Geophysical Research Letters, 24, 2155–2158. https://doi.org/10.1029/97GL02201
Kivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., et al. (1996). Discovery of Ganymede's magnetic field by the Galileo spacecraft. Nature, 384(6609), 537–541. https://doi.org/10.1038/384537a0
Koga, R., Tsuchiya, F., Kagitani, M., Sakanoi, T., Yoneda, M., Yoshioka, K., et al. (2018). The time variation of atomic oxygen emission around Io during a volcanic event observed with Hisaki/EXCEED. Icarus, 299, 300–307. https://doi.org/10.1016/j.icarus.2017.07.024
Laher, R. R., & Gilmore, F. R. (1990). Updated excitation and ionization cross sections for electron impact on atomic oxygen. Journal of Physical and Chemical Reference Data, 19(1), 277–305. https://doi.org/10.1063/1.555872
Leblanc, F., Oza, A. V., Leclercq, L., Schmidt, C., Cassidy, T., Modolo, R., et al. (2017). On the orbital variability of Ganymede's atmosphere. Icarus, 293, 185–198. https://doi.org/10.1016/j.icarus.2017.04.025
Lee, J.-S., & Meier, R. R. (1980). Angle-dependent frequency redistribution in a plane-parallel medium: External source case. Astrophysical Journal, 240, 185. https://doi.org/10.1086/158222
Marconi, M. L. (2007). A kinetic model of Ganymede's atmosphere. Icarus, 190(1), 155–174. https://doi.org/10.1016/j.icarus.2007.02.016
McGrath, M. A., Jia, X., Retherford, K. D., Feldman, P. D., Strobel, D. F., & Saur, J. (2013). Aurora on Ganymede. Journal of Geophysical Research: Space Physics, 118, 2043–2054. https://doi.org/10.1002/jgra.50122
Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research, 122, 2855–2876. https://doi.org/10.1002/2016JA023220
Nelson, R. M., Lane, A. L., Matson, D. L., Veeder, G. J., Buratti, B. J., & Tedesco, E. F. (1987). Spectral geometric albedos of the Galilean satellites from 0.24 to 0.34 micrometers: Observations with the international ultraviolet explorer. Icarus, 72(2), 358–380. https://doi.org/10.1016/0019-1035(87)90180-1
Noll, K. S., Johnson, R. E., Lane, A. L., Domingue, D. L., & Weaver, H. A. (1996). Detection of ozone on Ganymede. Science, 273(5273), 341–343. https://doi.org/10.1126/science.273.5273.341
Oliversen, R. J., Scherb, F. W., Smyth, H., Freed, M. E., Woodward, R. C. Jr., Marconi, M. L., et al. (2001). Sunlit Io atmosphere [O I] 6300 Å emission and the plasma torus. Journal of Geophysical Research, 106, 26,183–26,193. https://doi.org/10.1029/2000JA002507
Paty, C., Paterson, W., & Winglee, R. (2008). Ion energization in Ganymede's magnetosphere: Using multifluid simulations to interpret ion energy spectrograms. Journal of Geophysical Research, 113, A06211. https://doi.org/10.1029/JA012848
Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magnetosphere. Geophysical Research Letters, 31, L24806. https://doi.org/10.1029/2004GL021220
Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymede: Magnetic field morphology and magnetospheric dynamics. Geophysical Research Letters, 33, L10106. https://doi.org/10.1029/2005GL025273
Payan, A. P., Paty, C. S., & Retherford, K. D. (2015). Uncovering local magnetospheric processes governing the morphology and variability of Ganymede's aurora using three-dimensional multifluid simulations of Ganymede's magnetosphere. Journal of Geophysical Research: Space Physics, 120, 401–413. https://doi.org/10.1002/2014JA020301
Retherford, K. D., Moos, H. W., & Strobel, D. F. (2003). Io's auroral limb glow: Hubble Space Telescope FUV observations. Journal of Geophysical Research, 108(A8), 1333. https://doi.org/10.1029/2002JA009710
Retherford, K. D., Moos, H. W., Strobel, D. F., & Wolven, B. C. (2000). Io's equatorial spots: Morphology of neutral UV emissions. Journal of Geophysical Research, 105, 27,157–27,165. https://doi.org/10.1029/2000JA002500
Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., & Feldman, P. D. (2014). A phenomenological model of Io's UV aurora based on HST/STIS observations. Icarus, 228, 386–406. https://doi.org/10.1016/j.icarus.2013.10.009
Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A., et al. (2016). Europa's far-ultraviolet oxygen aurora from a comprehensive set of HST observations. Journal of Geophysical Research: Space Physics, 121, 2143–2170. https://doi.org/10.1002/2015JA022073
Saur, J., Duling, S., Roth, L., Jia, X., Strobel, D. F., Feldman, P. D., et al. (2015). The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. Journal of Geophysical Research: Space Physics, 120, 1715–1737. https://doi.org/10.1002/2014JA020778
Saur, J., Feldman, P. D., Roth, L., Nimmo, F., Strobel, D. F., Retherford, K. D., et al. (2011). Hubble Space Telescope/ Advanced Camera for Surveys observations of Europa's atmospheric ultraviolet emission at eastern elongation. Astrophysical Journal, 738(2), 153. https://doi.org/10.1088/0004-637X/738/2/153
Spencer, J. R., Calvin, W. M., & Person, M. J. (1995). Charge-coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede. Journal of Geophysical Research, 100, 19,049–19,056. https://doi.org/10.1029/95JE01503
Stone, E. J., & Zipf, E. C. (1974). Electron-impact excitation of the 3S0 and 5S0 states of atomic oxygen. Journal of Chemical Physics, 60(11), 4237–4243. https://doi.org/10.1063/1.1680894
Wolven, B. C., Moos, H. W., Retherford, K. D., Feldman, P. D., Strobel, D. F., Smyth, W. H., & Roesler, F. L. (2001). Emission profiles of neutral oxygen and sulfur in Io's exospheric corona. Journal of Geophysical Research, 106, 26,155–26,182. https://doi.org/10.1029/2000JA002506
Woods, T. N., Bailey, S., Eparvier, F., Lawrence, G., Lean, J., et al. (2000). TIMED Solar EUV experiment. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 25(5-6), 393–396. https://doi.org/10.1016/S1464-1917(00)00040-4