[en] single-domain fragment, cAb-HuL22, of a camelid heavy-chain antibody specific for the active site of human lysozyme has been generated, and its effects on the properties of the I56T and D67H amyloidogenic variants of human lysozyme, which are associated with a form of systemic amyloidosis, have been investigated by a wide range of biophysical techniques. Pulse-labeling hydrogen-deuterium exchange experiments monitored by mass spectrometry reveal that binding of the antibody fragment strongly inhibits the locally cooperative unfolding of the I56T and D67H variants and restores their global cooperativity to that characteristic of the wild-type protein. The antibody fragment was, however, not stable enough under the conditions used to explore its ability to perturb the aggregation behavior of the lysozyme amyloidogenic variants. We therefore engineered a more stable version of cAb-HuL22 by adding a disulfide bridge between the two beta-sheets in the hydrophobic core of the protein. The binding of this engineered antibody fragment to the amyloidogenic variants of lysozyme inhibited their aggregation into fibrils. These findings support the premise that the reduction in global cooperativity caused by the pathogenic mutations in the lysozyme gene is the determining feature underlying their amyloidogenicity. These observations indicate further that molecular targeting of enzyme active sites, and of protein binding sites in general, is an effective strategy for inhibiting or preventing the aberrant self-assembly process that is often a consequence of protein mutation and the origin of pathogenicity. Moreover, this work further demonstrates the unique properties of camelid single-domain antibody fragments as structural probes for studying the mechanism of aggregation and as potential inhibitors of fibril formation.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Chan, Pak Ho; University of Cambridge > Department of Chemistry
Matagne, André ; Université de Liège - ULiège > Département des sciences de la vie > Enzymologie et repliement des protéines, Centre d'Ingénierie des Protéines
Redfield, Christina; University of Oxford
Wyns, Lode; Vrije Universiteit Brussel - VUB
Dobson, Christopher M.
Dumoulin, Mireille ; Université de Liège - ULiège > Département des sciences de la vie > Enzymologie et repliement des protéines, Centre d'Ingénierie des Protéines
Pepys, M. B., Hawkins, P. N., Booth, D. R., Vigushin, D. M., Tennent, G. A., Soutar, A. K., Totty, N., Nguyen, O., Blake, C. C., Terry, C. J., Feest, T. G., Zalin, A. M., and Hsuan, J. J. (1993) Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 362, 553-557.
Rocken, C., Becker, K., Fandrich, M., Schroeckh, V., Stix, B., Rath, T., Kahne, T., Dierkes, J., Roessner, A., and Albert, F. W. (2006) ALys amyloidosis caused by compound heterozygosity in exon 2 (Thr70Asn) and exon 4 (Trp112Arg) of the lysozyme gene. Hum. Mutat. 27, 119-120.
Valleix, S., Drunat, S., Philit, J. B., Adoue, D., Piette, J. C., Droz, D., MacGregor, B., Canet, D., Delpech, M., and Grateau, G. (2002) Hereditary renal amyloidosis caused by a new variant lysozyme W64R in a French family. Kidney Int. 61, 907-912.
Yazaki, M., Farrell, S. A., and Benson, M. D. (2003) A novel lysozyme mutation Phe57Ile associated with hereditary renal amyloidosis. Kidney Int. 63, 1652-1657.
Dumoulin, M., Bellotti, V., and Dobson, C. M. (2005) Hereditary systemic amyloidosis associated with mutational variants of human lysozyme. In The beta pleated sheet conformation and diseases (Sipe, J. D., Ed.) pp 635-656, VCH Verlag GmbH & KgaA, Weinheim, Germany.
Dumoulin, M., Johnson, J. R. K., Bellotti, V., and Dobson, C. M. (2007) Human lysozyme. In Protein Misfolding, Aggregation, and Conformational Diseases (Uversky, V. N., and Fink, A., Eds.) pp 285-308, Springer, New York.
Dumoulin, M., Kumita, J. R., and Dobson, C. M. (2006) Normal and aberrant biological self-assembly: Insights from studies of human lysozyme and its amyloidogenic variants. Acc. Chem. Res. 39, 603-610.
Blake, C. C., and Swan, I. D. (1971) X-ray analysis of structure of human lysozyme at 6 Å resolution. Nat. New Biol. 232, 12-15.
Booth, D. R., Sunde, M., Bellotti, V., Robinson, C. V., Hutchinson, W. L., Fraser, P. E., Hawkins, P. N., Dobson, C. M., Radford, S. E., Blake, C. C., and Pepys, M. B. (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787-793.
Dumoulin, M., Canet, D., Last, A. M., Pardon, E., Archer, D. B., Muyldermans, S., Wyns, L., Matagne, A., Robinson, C. V., Redfleld, C., and Dobson, C. M. (2005) Reduced global cooperativity is a common feature underlying the amyloidogenicity of pathogenic lysozyme mutations. J. Mol. Biol. 346, 773-788.
Funahashi, J., Takano, K., Ogasahara, K., Yamagata, Y., and Yutani, K. (1996) The structure, stability, and folding process of amyloidogenic mutant human lysozyme. J. Biochem. (Tokyo, Jpn.) 120, 1216-1223.
Canet, D., Last, A. M., Tito, P., Sunde, M., Spencer, A., Archer, D. B., Redfleld, C., Robinson, C. V., and Dobson, C. M. (2002) Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat. Struct. Biol. 9, 308-315.
Dumoulin, M., Last, A. M., Desmyter, A., Decanniere, K., Canet, D., Larsson, G., Spencer, A., Archer, D. B., Sasse, J., Muyldermans, S., Wyns, L., Redfleld, C., Matagne, A., Robinson, C. V., and Dobson, C. M. (2003) A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature 424, 783-788.
Muyldermans, S. (2001) Single domain camel antibodies: Current status. J. Biotechnol. 74, 277-302.
Cortez-Retamozo, V., Backmann, N., Senter, P. D., Wernery, U., De Baetselier, P., Muyldermans, S., and Revets, H. (2004) Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 64, 2853-2857.
Conrath, K. E., Lauwereys, M., Galleni, M., Matagne, A., Frere, J. M., Kinne, J., Wyns, L., and Muyldermans, S. (2001) β-Lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob. Agents Chemother. 45, 2807-2812.
Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R., and Muyldermans, S. (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414, 521-526.
Saerens, D., Conrath, K., Govaert, J., and Muyldermans, S. (2008) Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. J. Mol. Biol. 377, 478-488.
Johnson, R. J., Christodoulou, J., Dumoulin, M., Caddy, G. L., Alcocer, M. J., Murtagh, G. J., Kumita, J. R., Larsson, G., Robinson, C. V., Archer, D. B., Luisi, B., and Dobson, C. M. (2005) Rationalising lysozyme amyloidosis: Insights from the structure and solution dynamics of T70N lysozyme. J. Mol. Biol. 352, 823-836.
Spencer, A., Morozova-Roche, L. A., Noppe, W., MacKenzie, D. A., Jeenes, D. J., Joniau, M., Dobson, C. M., and Archer, D. B. (1999) Expression, purification, and characterization of the recombinant calcium-binding equine lysozyme secreted by the filamentous fungus Aspergillus niger: Comparisons with the production of hen and human lysozymes. Protein Expression Purif. 16, 171-180.
Dumoulin, M., Conrath, K., Van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L. G., Muyldermans, S., Wyns, L., and Matagne, A. (2002) Single-domain antibody fragments with high conformational stability. Protein Sci. 11, 500-515.
Pace, C. N., and Scholtz, M. (1997) Measuring the conformational stability of a protein. In Protein structure: A practical approach (Creighton, T. E., Ed.) pp 299-321, IRL Press, Oxford, U.K.
Ohkubo, T., Taniyama, Y., and Kikuchi, M. (1991) 1H and 15N NMR study of human lysozyme. J. Biochem. (Tokyo, Jpn.) 110, 1022-1029.
Buck, M., Schwalbe, H., and Dobson, C. M. (1995) Characterization of conformational preferences in a partly folded protein by heteronuclear NMR spectroscopy: Assignment and secondary structure analysis of hen egg-white lysozyme in trifluoroethanol. Biochemistry 34, 13219-13232.
Redfield, C., and Dobson, C. M. (1988) Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry 27, 122-136.
Kumagai, I., Sunada, F., Takeda, S., and Miura, K. (1992) Redesign of the substrate-binding site of hen egg white lysozyme based on the molecular evolution of C-type lysozymes. J. Biol. Chem. 267, 4608-4612.
Kumeta, H., Miura, A., Kobashigawa, Y., Miura, K., Oka, C., Nemoto, N., Nitta, K., and Tsuda, S. (2003) Low-temperature-induced structural changes in human lysozyme elucidated by three-dimensional NMR spectroscopy. Biochemistry 42, 1209-1216.
Harata, K. (1994) X-ray structure of a monocyclic form of hen egg-white lysozyme crystallized at 313 K. Comparison of two independent molecules. Acta Crystallogr. D50, 250-257.
Desmyter, A., Transue, T. R., Ghahroudi, M. A., Thi, M. H., Poortmans, F., Hamers, R., Muyldermans, S., and Wyns, L. (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol. 3, 803-811.
Desmyter, A., Spinelli, S., Payan, F., Lauwereys, M., Wyns, L., Muyldermans, S., and Cambillau, C. (2002) Three camelid VHH domains in complex with porcine pancreatic α-amylase. Inhibition and versatility of binding topology. J. Biol. Chem. 277, 23645-23650.
Muyldermans, S., and Lauwereys, M. (1999) Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. J. Mol. Recognit. 12, 131-140.
De Genst, E., Handelberg, F., Van Meirhaeghe, A., Vynck, S., Loris, R., Wyns, L., and Muyldermans, S. (2004) Chemical basis for the affinity maturation of a camel single domain antibody. J. Biol. Chem. 279, 53593-53601.
Saerens, D., Pellis, M., Loris, R., Pardon, E., Dumoulin, M., Matagne, A., Wyns, L., Muyldermans, S., and Conrath, K. (2005) Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. J. Mol. Biol. 352, 597-607.
Hagihara, Y., Mine, S., and Uegaki, K. (2007) Stabilization of an immunoglobulin fold domain by an engineered disulfide bond at the buried hydrophobic region. J. Biol. Chem. 282, 36489-36495.
Stefani, M., and Dobson, C. M. (2003) Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678-699.
Rochet, J. C. (2007) Novel therapeutic strategies for the treatment of protein-misfolding diseases. Expert Rev. Mol. Med. 9, 1-34.
Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid and human disease. Annu. Rev. Biochem. 75, 333-366.
Chiti, F., Taddei, N., Stefani, M., Dobson, C. M., and Ramponi, G. (2001) Reduction of the amyloidogenicity of a protein by specific binding of ligands to the native conformation. Protein Sci. 10, 879-886.
Hammarstrom, P., Wiseman, R. L., Powers, E. T., and Kelly, J. W. (2003) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299, 713-716.
Johnson, S. M., Wiseman, R. L., Sekijima, Y., Green, N. S., Adamski-Werner, S. L., and Kelly, J. W. (2005) Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: A focus on the transthyretin amyloidoses. Acc. Chem. Res. 38, 911-921.
Ray, S. S., Nowak, R. J., Brown, R. H., Jr., and Lansbury, P. T., Jr. (2005) Small-molecule mediated stabilization of familial amyotrophic lateral sclerosis linked superoxide dismutase mutants against unfolding and aggregation. Proc. Natl. Acad. Sci. U.S.A. 102, 3639-3644.
Merlini, G., and Bellotti, V. (2005) Lysozyme: A paradigmatic molecule for the investigation of protein structure, function and misfolding. Clin. Chim. Acta 357, 168-172.
Foss, T. R., Wiseman, R. L., and Kelly, J. W. (2005) The pathway by which the tetrameric protein transthyretin dissociates. Biochemistry 44, 15525-15533.
Foss, T. R., Kelker, M. S., Wiseman, R. L., Wilson, I. A., and Kelly, J. W. (2005) Kinetic stabilization of the native state by protein engineering: Implications for inhibition of transthyretin amyloidogenesis. J. Mol. Biol. 347, 841-854.
Transue, T. R., De Genst, E., Ghahroudi, M. A., Wyns, L., and Muyldermans, S. (1998) Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate. Proteins 32, 515-522.
De Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., Muyldermans, S., and Wyns, L. (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc. Natl. Acad. Sci. U.S.A. 103, 4586-4591.
Marquardt, A., Muyldermans, S., and Przybylski, M. (2006) A Synthetic Camel Anti-Lysozyme Peptide Antibody (Peptibody) with Flexible Loop Structure Identified by High-Resolution Affinity Mass Spectrometry. Chemistry 12, 1915-1923.
Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51-55, 29-32.