[en] Silver nanowire (AgNW) networks offer excellent electrical and optical properties and have emerged as one of the most attractive alternatives to transparent conductive oxides to be used in flexible optoelectronic applications. However, AgNW networks still suffer from chemical, thermal and electrical instabilities which in some cases can hinder their efficient integration as transparent electrodes in devices such as solar cells, transparent heaters, touch screens or organic light emitting diodes (OLEDs). We have used atmospheric pressure spatial atomic layer deposition (AP-SALD) to fabricate hybrid transparent electrode materials in which the AgNW network is protected by a conformal thin zinc oxide layer. The choice of AP-SALD allows to maintain the low-cost and scalable processing of AgNW based transparent electrodes. The effects of the ZnO coating thickness on the physical properties of AgNW networks are presented. The composite electrodes show a drastic enhancement of both thermal and electrical stabilities. We found that bare AgNWs were stable only up to 300 °C when subjected to thermal ramps while the ZnO coating improved stability up to 500 °C. Similarly, ZnO coated AgNWs exhibited an increase of a 100 % in electrical stability with respect to bare networks, withstanding up to 18 V. A simple physical model shows that the origin of the stability improvement is the result of hindered silver atomic diffusion thanks to the presence of the thin oxide layer and the quality of the interfaces of hybrid electrodes. The effects of ZnO coating on both the network adhesion and optical transparency are also discussed. Finally, we show that the AP-SALD ZnO-coated AgNW networks can be effectively used as very stable transparent heaters.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Khan, Afzal; Université de Grenoble Alpes > Laboratoire des Matériaux et du Génie Physique
Nguyen, Viet Huong; Université de Grenoble Alpes > Laboratoire des Matériaux et du Génie Physique
Munoz-Rojas, David; Université de Grenoble Alpes > Laboratoire des Matériaux et du Génie Physique
Aghazadehchors, Sara ; Université de Liège - ULiège > Form. doct. sc. (phys. - Paysage)
Jimenez, Carmen; Université de Grenoble Alpes > Laboratoire des Matériaux et du Génie Physique
Nguyen, Ngoc Duy ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Bellet, Daniel; Université de Grenoble Alpes > Laboratoire des Matériaux et du Génie Physique
Language :
English
Title :
Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition
Publication date :
2018
Journal title :
ACS Applied Materials and Interfaces
ISSN :
1944-8244
eISSN :
1944-8252
Publisher :
American Chemical Society, United States - District of Columbia
Ellmer, K. Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes. Nat. Photonics 2012, 6, 809-817, 10.1038/nphoton.2012.282
Granqvist, C. G. Transparent Conductors as Solar Energy Materials: A Panoramic Review. Sol. Energy Mater. Sol. Cells 2007, 91, 1529-1598, 10.1016/j.solmat.2007.04.031
Hecht, D. S.; Hu, L.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 2011, 23, 1482-1513, 10.1002/adma.201003188
De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. ACS Nano 2009, 3, 1767-1774, 10.1021/nn900348c
Langley, D.; Giusti, G.; Mayousse, C.; Celle, C.; Bellet, D.; Simonato, J.-P. Flexible Transparent Conductive Materials Based on Silver Nanowire Networks: A Review. Nanotechnology 2013, 24, 452001 10.1088/0957-4484/24/45/452001
Guo, C. F.; Ren, Z. Flexible Transparent Conductors Based on Metal Nanowire Networks. Mater. Today 2015, 18, 143-154, 10.1016/j.mattod.2014.08.018
Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J.; Bellet, D. Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: A Review. Small 2016, 12, 6052-6075, 10.1002/smll.201602581
He, L.; Tjong, S. C. Nanostructured Transparent Conductive Films: Fabrication, Characterization and Applications. Mater. Sci. Eng., R 2016, 109, 1-101, 10.1016/j.mser.2016.08.002
Lagrange, M.; Langley, D. P.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Bellet, D. Optimization of Silver Nanowire-Based Transparent Electrodes: Effects of Density, Size and Thermal Annealing. Nanoscale 2015, 7, 17410-17423, 10.1039/C5NR04084A
Bellet, D.; Lagrange, M.; Sannicolo, T.; Aghazadehchors, S.; Nguyen, V. H.; Langley, D. P.; Muñoz-Rojas, D.; Jiménez, C.; Bréchet, Y.; Nguyen, N. D. Transparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration. Materials 2017, 10, 570 10.3390/ma10060570
Emmott, C. J. M.; Urbina, A.; Nelson, J. Environmental and Economic Assessment of ITO-Free Electrodes for Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2012, 97, 14-21, 10.1016/j.solmat.2011.09.024
Celle, C.; Mayousse, C.; Moreau, E.; Basti, H.; Carella, A.; Simonato, J.-P. Highly Flexible Transparent Film Heaters Based on Random Networks of Silver Nanowires. Nano Res. 2012, 5, 427-433, 10.1007/s12274-012-0225-2
Kiruthika, S.; Gupta, R.; Kulkarni, G. U. Large Area Defrosting Windows Based on Electrothermal Heating of Highly Conducting and Transmitting Ag Wire Mesh. RSC Adv. 2014, 4, 49745-49751, 10.1039/C4RA06811D
Sorel, S.; Bellet, D.; Coleman, J. N. Relationship between Material Properties and Transparent Heater Performance for Both Bulk-like and Percolative Nanostructured Networks. ACS Nano 2014, 8, 4805-4814, 10.1021/nn500692d
Ergun, O.; Coskun, S.; Yusufoglu, Y.; Unalan, H. E. High-Performance, Bare Silver Nanowire Network Transparent Heaters. Nanotechnology 2016, 27, 445708 10.1088/0957-4484/27/44/445708
Guo, F.; Zhu, X.; Forberich, K.; Krantz, J.; Stubhan, T.; Salinas, M.; Halik, M.; Spallek, S.; Butz, B.; Spiecker, E.; Ameri, T.; Li, N.; Kubis, P.; Guldi, D. M.; Matt, G. J.; Brabec, C. J. ITO-Free and Fully Solution-Processed Semitransparent Organic Solar Cells with High Fill Factors. Adv. Energy Mater. 2013, 3, 1062-1067, 10.1002/aenm.201300100
Guo, F.; Li, N.; Radmilović, V. V.; Radmilović, V. R.; Turbiez, M.; Spiecker, E.; Forberich, K.; Brabec, C. J. Fully Printed Organic Tandem Solar Cells Using Solution-Processed Silver Nanowires and Opaque Silver as Charge Collecting Electrodes. Energy Environ. Sci. 2015, 8, 1690-1697, 10.1039/C5EE00184F
Morgenstern, F. S. F.; Kabra, D.; Massip, S.; Brenner, T. J. K.; Lyons, P. E.; Coleman, J. N.; Friend, R. H. Ag-Nanowire Films Coated with ZnO Nanoparticles as a Transparent Electrode for Solar Cells. Appl. Phys. Lett. 2011, 99, 48-50, 10.1063/1.3656973
Langley, D. P.; Giusti, G.; Lagrange, M.; Collins, R.; Jiménez, C.; Bréchet, Y.; Bellet, D. Silver Nanowire Networks: Physical Properties and Potential Integration in Solar Cells. Sol. Energy Mater. Sol. Cells 2014, 125, 318-324, 10.1016/j.solmat.2013.09.015
Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S. S.; Ko, S. H. Very Long Ag Nanowire Synthesis and Its Application in a Highly Transparent, Conductive and Flexible Metal Electrode Touch Panel. Nanoscale 2012, 4, 6408-6414, 10.1039/c2nr31254a
Wang, J.; Jiu, J.; Araki, T.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; He, P.; Suganuma, K. Silver Nanowire Electrodes: Conductivity Improvement Without Post-Treatment and Application in Capacitive Pressure Sensors. Nano-Micro Lett. 2015, 7, 51-58, 10.1007/s40820-014-0018-0
Kim, D.-H.; Kim, Y.; Kim, J.-W. Transparent and Flexible Film for Shielding Electromagnetic Interference. Mater. Des. 2016, 89, 703-707, 10.1016/j.matdes.2015.09.142
Song, L.; Myers, A. C.; Adams, J. J.; Zhu, Y. Stretchable and Reversibly Deformable Radio Frequency Antennas Based on Silver Nanowires. ACS Appl. Mater. Interfaces 2014, 6, 4248-4253, 10.1021/am405972e
Lee, H.; Lee, D.; Ahn, Y.; Lee, E.-W.; Park, L. S.; Lee, Y. Highly Efficient and Low Voltage Silver Nanowire-Based OLEDs Employing a n-Type Hole Injection Layer. Nanoscale 2014, 6, 8565-8570, 10.1039/C4NR01768D
Yuksel, R.; Ataoglu, E.; Turan, J.; Alpugan, E.; Ozdemir Hacioglu, S.; Toppare, L.; Cirpan, A.; Emrah Unalan, H.; Gunbas, G. A New High-Performance Blue to Transmissive Electrochromic Material and Use of Silver Nanowire Network Electrodes as Substrates. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1680-1686, 10.1002/pola.28506
Choi, S.; Park, J.; Hyun, W.; Kim, J.; Kim, J.; Lee, Y. B.; Song, C.; Hwang, H. J.; Kim, J. H.; Hyeon, T.; Kim, D.-H. Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. ACS Nano 2015, 9, 6626-6633, 10.1021/acsnano.5b02790
Atwa, Y.; Maheshwari, N.; Goldthorpe, I. A. Silver Nanowire Coated Threads for Electrically Conductive Textiles. J. Mater. Chem. C 2015, 3, 3908-3912, 10.1039/C5TC00380F
Langley, D. P.; Lagrange, M.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Nguyen, N. D.; Bellet, D. Metallic Nanowire Networks: Effects of Thermal Annealing on Electrical Resistance. Nanoscale 2014, 6, 13535-13543, 10.1039/C4NR04151H
Khaligh, H. H.; Goldthorpe, I. A. Failure of Silver Nanowire Transparent Electrodes under Current Flow. Nanoscale Res. Lett. 2013, 8, 235 10.1186/1556-276X-8-235
Mayousse, C.; Celle, C.; Fraczkiewicz, A.; Simonato, J. Stability of Silver Nanowire Based Electrodes under Environmental and Electrical Stresses. Nanoscale 2015, 2107-2115, 10.1039/C4NR06783E
Celle, C.; Cabos, A.; Fontecave, T.; Laguitton, B.; Benayad, A.; Guettaz, L.; Pélissier, N.; Nguyen, V. H.; Bellet, D.; Muñoz-Rojas, D.; Simonato, J.-P. Oxidation of Copper Nanowire Based Transparent Electrodes in Ambient Conditions and Their Stabilization by Encapsulation: Application to Transparent Fi Lm Heaters. Nanotechnology 2018, 29, 085701 10.1088/1361-6528/aaa48e
Vafaei, A.; Hu, A.; Goldthorpe, I. A. Joining of Individual Silver Nanowires via Electrical Current. Nano-Micro Lett. 2014, 6, 293-300, 10.1007/s40820-014-0001-9
Sannicolo, T.; Muñoz-Rojas, D.; Nguyen, N. D.; Moreau, S.; Celle, C.; Simonato, J.-P.; Bréchet, Y.; Bellet, D. Direct Imaging of the Onset of Electrical Conduction in Silver Nanowire Networks by Infrared Thermography: Evidence of Geometrical Quantized Percolation. Nano Lett. 2016, 16, 7046-7053, 10.1021/acs.nanolett.6b03270
Ramasamy, P.; Seo, D.-M.; Kim, S.-H.; Kim, J. Effects of TiO2 Shells on Optical and Thermal Properties of Silver Nanowires. J. Mater. Chem. 2012, 22, 11651-11657, 10.1039/c2jm00010e
Song, T.-B.; Rim, Y. S.; Liu, F.; Bob, B.; Ye, S.; Hsieh, Y.-T.; Yang, Y. Highly Robust Silver Nanowire Network for Transparent Electrode. ACS Appl. Mater. Interfaces 2015, 7, 24601-24607, 10.1021/acsami.5b06540
Zhu, R.; Chung, C.-H.; Cha, K. C.; Yang, W.; Zheng, Y. B.; Zhou, H.; Song, T.-B.; Chen, C.-C.; Weiss, P. S.; Li, G.; Yang, Y. Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors. ACS Nano 2011, 5, 9877-9882, 10.1021/nn203576v
Kim, A.; Won, Y.; Woo, K.; Kim, C.-H.; Moon, J. Highly Transparent Low Resistance ZnO / Ag Nanowire / ZnO Composite Electrode for Thin Film Solar Cells. ACS Nano 2013, 7, 1081-1091, 10.1021/nn305491x
Chen, D.; Liang, J.; Liu, C.; Saldanha, G.; Zhao, F.; Tong, K.; Liu, J.; Pei, Q. Thermally Stable Silver Nanowire-Polyimide Transparent Electrode Based on Atomic Layer Deposition of Zinc Oxide on Silver Nanowires. Adv. Funct. Mater. 2015, 25, 7512-7520, 10.1002/adfm.201503236
Pham, A. T.; Nguyen, X. Q.; Tran, D. H.; Ngoc Phan, V.; Duong, T. T.; Nguyen, D. C. Enhancement of the Electrical Properties of Silver Nanowire Transparent Conductive Electrodes by Atomic Layer Deposition Coating with Zinc Oxide. Nanotechnology 2016, 27, 335202 10.1088/0957-4484/27/33/335202
Göbelt, M.; Keding, R.; Schmitt, S. W.; Hoffmann, B.; Jäckle, S.; Latzel, M.; Radmilović, V. V.; Radmilović, V. R.; Spiecker, E.; Christiansen, S. Encapsulation of Silver Nanowire Networks by Atomic Layer Deposition for Indium-Free Transparent Electrodes. Nano Energy 2015, 16, 196-206, 10.1016/j.nanoen.2015.06.027
Muñoz-Rojas, D.; MacManus-Driscoll, J. Spatial Atmospheric Atomic Layer Deposition: A New Laboratory and Industrial Tool for Low-Cost Photovoltaics. Mater. Horiz. 2014, 1, 314-320, 10.1039/C3MH00136A
Poodt, P.; Cameron, D. C.; Dickey, E.; George, S. M.; Kuznetsov, V.; Parsons, G. N.; Roozeboom, F.; Sundaram, G.; Vermeer, A. Spatial Atomic Layer Deposition: A Route towards Further Industrialization of Atomic Layer Deposition. J. Vac. Sci. Technol., A 2012, 30, 010802 10.1116/1.3670745
Hoye, R. L. Z.; Muñoz-Rojas, D.; Nelson, S. F.; Illiberi, A.; Poodt, P.; Roozeboom, F.; MacManus-Driscoll, J. L. Research Update: Atmospheric Pressure Spatial Atomic Layer Deposition of ZnO Thin Films: Reactors, Doping, and Devices. APL Mater. 2015, 3, 040701 10.1063/1.4916525
Nguyen, V. H.; Resende, J.; Jiménez, C.; Deschanvres, J.; Carroy, P.; Muñoz, D.; Bellet, D.; Muñoz-Rojas, D. Deposition of ZnO Based Thin Films by Atmospheric Pressure Spatial Atomic Layer Deposition for Application in Solar Cells. J. Renewable Sustainable Energy 2017, 9, 021203 10.1063/1.4979822
Muñoz-Rojas, D.; Nguyen, V. H.; Masse de la Huerta, C.; Aghazadehchors, S.; Jiménez, C.; Bellet, D. Spatial Atomic Layer Deposition (SALD), an Emerging Tool for Energy Materials. Application to New-Generation Photovoltaic Devices and Transparent Conductive Materials. C. R. Phys. 2017, 18, 391-400, 10.1016/j.crhy.2017.09.004
Muñoz-Rojas, D.; Sun, H.; Iza, D. C.; Weickert, J.; Chen, L.; Wang, H.; Schmidt-Mende, L.; MacManus-Driscoll, J. L. High-Speed Atmospheric Atomic Layer Deposition of Ultra Thin Amorphous TiO 2 Blocking Layers at 100 °C for Inverted Bulk Heterojunction Solar Cells. Prog. Photovoltaics 2013, 21, 393-400, 10.1002/pip.2380
Lagrange, M.; Sannicolo, T.; Muñoz-Rojas, D.; Lohan, B. G.; Khan, A.; Anikin, M.; Jiménez, C.; Bruckert, F.; Bréchet, Y.; Bellet, D. Understanding the Mechanisms Leading to Failure in Metallic Nanowire-Based Transparent Heaters, and Solution for Stability Enhancement. Nanotechnology 2017, 28, 055709 10.1088/1361-6528/28/5/055709
Bid, A.; Bora, A.; Raychaudhuri, A. K. Temperature Dependence of the Resistance of Metallic Nanowires of Diameter ≥15nm: Applicability of Bloch-Grüneisen Theorem. Phys. Rev. B 2006, 74, 035426 10.1103/PhysRevB.74.035426
Urban, D. F.; Grabert, H. Interplay of Rayleigh and Peierls Instabilities in Metallic Nanowires. Phys. Rev. Lett. 2003, 91, 256803 10.1103/PhysRevLett.91.256803
Karim, S.; Toimil-Molares, M. E.; Balogh, A. G.; Ensinger, W.; Cornelius, T. W.; Khan, E. U.; Neumann, R. Morphological Evolution of Au Nanowires Controlled by Rayleigh Instability. Nanotechnology 2006, 17, 5954-5959, 10.1088/0957-4484/17/24/009
Sannicolo, T.; Chavin, N.; Flandin, L.; Kraus, S.; Papanastasiou, D. T.; Celle, C.; Simonato, J. P.; Muñoz-Rojas, D.; Jiménez, C.; Bellet, D. Electrical Mapping of Silver Nanowire Networks: A Versatile Tool for Imaging Network Homogeneity and Degradation Dynamics during Failure. ACS Nano. 2018, 12, 4648-4659, 10.1021/acsnano.8b01242
Stahlmecke, B.; Heringdorf, F. M.; Chelaru, L. I.; Hoegen, M. H.; Dumpich, G.; Roos, K. R. Electromigration in Self-Organized Single-Crystalline Silver Nanowires. Appl. Phys. Lett. 2006, 88, 053122 10.1063/1.2172012
Xue, Z.; Xu, M.; Zhao, Y.; Wang, J.; Jiang, X.; Yu, L.; Wang, J.; Xu, J.; Shi, Y.; Chen, K.; Roca i Cabarrocas, P. Engineering Island-Chain Silicon Nanowires via a Droplet Mediated Plateau-Rayleigh Transformation. Nat. Commun. 2016, 7, 12836 10.1038/ncomms12836
Vagnon, A.; Rivière, J. P.; Missiaen, J. M.; Bellet, D.; Di Michiel, M.; Josserond, C.; Bouvard, D. 3D Statistical Analysis of a Copper Powder Sintering Observed in Situ by Synchrotron Microtomography. Acta Mater. 2008, 56, 1084-1093, 10.1016/j.actamat.2007.11.008
Vagnon, A.; Lame, O.; Bouvard, D.; Michiel, M. D.; Bellet, D.; Kapelski, G. Deformation of Steel Powder Compacts during Sintering: Correlation between Macroscopic Measurement and in Situ Microtomography Analysis. Acta Mater. 2006, 54, 513-522, 10.1016/j.actamat.2005.09.030
Nguyen, N. D.; Rosseel, E.; Takeuchi, S.; Everaert, J.-L.; Yang, L.; Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H.; Zaima, S.; Sakai, A.; Loo, R.; Lin, J. C.; Vandervorst, W.; Caymax, M. Use of P- and n-Type Vapor Phase Doping and Sub-Melt Laser Anneal for Extension Junctions in Sub-32 Nm CMOS Technology. Thin Solid Films 2010, 518, S48-S52, 10.1016/j.tsf.2009.10.053
Takeuchi, S.; Nguyen, N. D.; Leys, F. E.; Loo, R.; Conard, T.; Vandervorst, W.; Caymax, M. Vapor Phase Doping with N-Type Dopant into Silicon by Atmospheric Pressure Chemical Vapor Deposition. ECS Trans. 2008, 16, 495-502, 10.1149/1.2986806
Kuo, S.-T.; Tuan, W.-H.; Shieh, J.; Wang, S.-F. Effect of Ag on the Microstructure and Electrical Properties of ZnO. J. Eur. Ceram. Soc. 2007, 27, 4521-4527, 10.1016/j.jeurceramsoc.2007.02.215
Sakaguchi, I.; Watanabe, K.; Ohgaki, T.; Nakagawa, T.; Hishita, S.; Adachi, Y.; Ohashi, N.; Haneda, H. Ion Implantation and Diffusion Behavior of Silver in Zinc Oxide. J. Ceram. Soc. Jpn. 2010, 118, 217-219, 10.2109/jcersj2.118.217
McBrayer, J. D.; Swanson, R. M.; Sigmon, T. W. Diffusion of Metals in Silicon Dioxide. J. Electrochem. Soc. 1986, 133, 1242-1246, 10.1149/1.2108827