[en] Camel single-domain antibody fragments (VHHs) are promising tools in
numerous biotechnological and medical applications. However, some
conditions under which antibodies are used are so demanding that they
can be met by only the most robust VHHs. A universal framework offering
the required properties for use in various applications (e.g. as intrabody, as
probe in biosensors or on micro-arrays) is highly valuable and might be
further implemented when employment of VHHs in human therapy is
envisaged. We identified the VHH framework of cAbBCII10 as a potential
candidate, useful for the exchange of antigen specificities by complementarity
determining region (CDR) grafting. Due to the large number of CDRH
loop structures present on VHHs, this grafting technique was expected
to be rather unpredictable. Nonetheless, the plasticity of the cAbBCII10
framework allows successful transfer of antigen specificity from donor
VHHs onto its scaffold. The cAbBCII10 was chosen essentially for its high
level of stability (47 kJ/mol), good expression level (5 mg/l in E. coli)
and its ability to be functional in the absence of the conserved disulfide
bond. All five chimeras generated by grafting CDR-Hs, from donor VHHs
belonging to subfamily 2 that encompass 75% of all antigen-specific VHHs,
on the framework of cAbBCII10 were functional and generally had an
increased thermodynamic stability. The grafting of CDR-H loops from
VHHs belonging to other subfamilies resulted in chimeras of reduced
antigen-binding capacity.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Saerens, Dirk
Pellis, Mireille
Loris, Remy
Pardon, Els
Dumoulin, Mireille ; Université de Liège - ULiège > Département des sciences de la vie > Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines
Matagne, André ; Université de Liège - ULiège > Département des sciences de la vie > Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines
Wyns, Lode
Muyldermans, Serge
Language :
English
Title :
Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
C. Hamers-Casterman, T. Atarhouch, S. Muyldermans, G. Robinson, C. Hamers, and E.B. Songa Naturally occurring antibodies devoid of light chains Nature 363 1993 446 448
V.K. Nguyen, A. Desmyter, and S. Muyldermans Functional heavy-chain antibodies in Camelidae Advan. Immunol. 79 2001 261 296
R.H. van der Linden, L.G. Frenken, B. de Geus, M.M. Harmsen, R.C. Ruuls, and W. Stok Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies Biochim. Biophys. Acta 1431 1999 37 46
M. Arbabi Ghahroudi, A. Desmyter, L. Wyns, R. Hamers, and S. Muyldermans Selection and identification of single domain antibody fragments from camel heavy-chain antibodies FEBS Letters 414 1997 521 526
B. Stijlemans, K. Conrath, V. Cortez-Retamozo, H. Van Xong, L. Wyns, and P. Senter Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm J. Biol. Chem. 279 2004 1256 1261
V. Cortez-Retamozo, M. Lauwereys, G. Hassanzadeh Gh, M. Gobert, K. Conrath, and S. Muyldermans Efficient tumor targeting by single-domain antibody fragments of camels Int. J. Cancer 98 2002 456 462
V. Cortez-Retamozo, N. Backmann, P.D. Senter, U. Wernery, P. De Baetselier, S. Muyldermans, and H. Revets Efficient cancer therapy with a nanobody-based conjugate Cancer Res. 64 2004 2853 2857
S. Muyldermans Single domain camel antibodies: current status J. Biotechnol. 74 2001 277 302
K.E. Conrath, M. Lauwereys, M. Galleni, A. Matagne, J.M. Frere, and J. Kinne Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae Antimicrob. Agents Chemother. 45 2001 2807 2812
M. Lauwereys, M. Arbabi Ghahroudi, A. Desmyter, J. Kinne, W. Holzer, and E. De Genst Potent enzyme inhibitors derived from dromedary heavy-chain antibodies EMBO J. 17 1998 3512 3520
A.F. Williams, and A.N. Barclay The immunoglobulin superfamily - domains for cell surface recognition Annu. Rev. Immunol. 6 1988 381 405
C. Wingren, C. Steinhauer, J. Ingvarsson, E. Persson, K. Larsson, and C.A. Borrebaeck Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes Proteomics 5 2005 1281 1291
T. Volkel, R. Muller, and R.E. Kontermann Isolation of endothelial cell-specific human antibodies from a novel fully synthetic scFv library Biochem. Biophys. Res. Commun. 317 2004 515 521
S.S. Sidhu, B. Li, Y. Chen, F.A. Fellouse, C. Eigenbrot, and G. Fuh Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions J. Mol. Biol. 338 2004 299 310
C.V. Lee, W.C. Liang, M.S. Dennis, C. Eigenbrot, S.S. Sidhu, and G. Fuh High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold J. Mol. Biol. 340 2004 1073 1093
T. Tanaka, G.T. Chung, A. Forster, M.N. Lobato, and T.H. Rabbitts De novo production of diverse intracellular antibody libraries Nucl. Acids Res. 31 2003 e23
A. Desiderio, R. Franconi, M. Lopez, M.E. Villani, F. Viti, and R. Chiaraluce A semi-synthetic repertoire of intrinsically stable antibody fragments derived from a single-framework scaffold J. Mol. Biol. 310 2001 603 615
A. Knappik, L. Ge, A. Honegger, P. Pack, M. Fischer, and G. Wellnhofer Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides J. Mol. Biol. 296 2000 57 86
D. Saerens, J. Kinne, E. Bosmans, U. Wernery, S. Muyldermans, and K. Conrath Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen J. Biol. Chem. 279 2004 51965 51972
E. Dolk, M. van der Vaart, D. Lutje Hulsik, G. Vriend, H. de Haard, and S. Spinelli Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo Appl. Environ. Microbiol. 71 2005 442 450
W.Y. Hwang, J.C. Almagro, T.N. Buss, P. Tan, and J. Foote Use of human germline genes in a CDR homology-based approach to antibody humanization Methods 36 2005 35 42
P.T. Jones, P.H. Dear, J. Foote, M.S. Neuberger, and G. Winter Replacing the complementarity-determining regions in a human antibody with those from a mouse Nature 321 1986 522 525
N.R. Gonzales, R. De Pascalis, J. Schlom, and S.V. Kashmiri Minimizing the immunogenicity of antibodies for clinical application Tumour Biol. 26 2005 31 43
K. Decanniere, S. Muyldermans, and L. Wyns Canonical antigen-binding loop structures in immunoglobulins: more structures, more canonical classes? J. Mol. Biol. 300 2000 83 91
M. Dumoulin, A.M. Last, A. Desmyter, K. Decanniere, D. Canet, and G. Larsson A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme Nature 424 2003 783 788
A. Desmyter, K. Decanniere, S. Muyldermans, and L. Wyns Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody J. Biol. Chem. 276 2001 26285 26290
M. Dumoulin, K. Conrath, A. Van Meirhaeghe, F. Meersman, K. Heremans, and L.G. Frenken Single-domain antibody fragments with high conformational stability Protein Sci. 11 2002 500 515
A. Worn, and A. Pluckthun An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly FEBS Letters 427 1998 357 361
S. Ewert, C. Cambillau, K. Conrath, and A. Pluckthun Biophysical properties of camelid V(HH) domains compared to those of human V(H)3 domains Biochemistry 41 2002 3628 3636
K. Decanniere, A. Desmyter, M. Lauwereys, M.A. Ghahroudi, S. Muyldermans, and L. Wyns A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops Struct. Fold. Des. 7 1999 361 370
A. Desmyter, T.R. Transue, M.A. Ghahroudi, M.H. Thi, F. Poortmans, and R. Hamers Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme Nature Struct. Biol. 3 1996 803 811
V.K. Nguyen, S. Muyldermans, and R. Hamers The specific variable domain of camel heavy-chain antibodies is encoded in the germline J. Mol. Biol. 275 1998 413 418
K. Conrath, C. Vincke, B. Stijlemans, J. Schymkowitz, K. Decanniere, and L. Wyns Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic a VH J. Mol. Biol. 350 2005 112 125
S.V. Kashmiri, R. De Pascalis, N.R. Gonzales, and J. Schlom SDR grafting - a new approach to antibody humanization Methods 36 2005 25 34
S.V. Kashmiri, R. De Pascalis, and N.R. Gonzales Developing a minimally immunogenic humanized antibody by SDR grafting Methods Mol. Biol. 248 2004 361 376
N.R. Gonzales, E.A. Padlan, R. De Pascalis, P. Schuck, J. Schlom, and S.V. Kashmiri SDR grafting of a murine antibody using multiple human germline templates to minimize its immunogenicity Mol. Immunol. 41 2004 863 872
S. Ewert, A. Honegger, and A. Pluckthun Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering Methods 34 2004 184 199
A. Tramontano, C. Chothia, and A.M. Lesk Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins J. Mol. Biol. 215 1990 175 182
Z. Otwinowski, and W. Minor Processing of X-ray diffraction data collected in oscillation mode Methods Enzymol. 276 1997 760 763
Collaborative Computational Project Number 4 The CCP4 suite: programs for protein crystallography Acta Crystallog. sect. D 50 1994 760 763
J. Navaza Implementation of molecular replacement in AMoRe Acta Crystallog. sect. D 57 2001 1367 1372
A.T. Brunger, P.D. Adams, G.M. Clore, W.L. DeLano, P. Gros, and R.W. Grosse-Kunstleve Crystallography & NMR system: a new software suite for macromolecular structure determination Acta Crystallog. sect. D 54 1998 905 921
A. Roussel, and C. Cambillau TURBO-FRODO Silicon Graphic Geometry Partner Directory 1989 Silicon Graphics Mountain View, CA pp. 71-78
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.