[en] The aggregation process of wild-type human lysozyme at pH 3.0 and 60 °C has been analyzed by characterizing a series of distinct species formed on the aggregation pathway, specifically the amyloidogenic monomeric precursor protein, the oligomeric soluble prefibrillar aggregates, and the mature fibrils. Particular attention has been focused on the analysis of the structural properties of the oligomeric species, since recent studies have shown that the oligomers formed by lysozyme prior to the appearance of mature amyloid fibrils are toxic to cells. Here, soluble oligomers of human lysozyme have been analyzed by a range of techniques including binding to fluorescent probes such as thioflavin T and 1-anilino-naphthalene-8-sulfonate, Fourier transform infrared spectroscopy, and controlled proteolysis. Oligomers were isolated after 5 days of incubation of the protein and appear as spherical particles with a diameter of 8–17 nm when observed by transmission electron microscopy. Unlike the monomeric protein, oligomers have solvent-exposed hydrophobic patches able to bind the fluorescent probe 1-anilino-naphthalene-8-sulfonate. Fourier transform infrared spectroscopy spectra of oligomers are indicative of misfolded species when compared to monomeric lysozyme, with a prevalence of random structure but with significant elements of the β-sheet structure that is characteristic of the mature fibrils. Moreover, the oligomeric lysozyme aggregates were found to be more susceptible to proteolysis with pepsin than both the monomeric protein and the mature fibrils, indicating further their less organized structure. In summary, this study shows that the soluble lysozyme oligomers are locally unfolded species that are present at low concentration during the initial phases of aggregation. The nonnative conformational features of the lysozyme molecules of which they are composed are likely to be the factors that confer on them the ability to interact inappropriately with a variety of cellular components including membranes.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Frare, Erica; University of Padua > CRIBI Biotechnology Centre
Mossuto, Maria F.; University of Padua > CRIBI Biotechnology Centre
Polverino de Laureto, Patrizia; University of Padua > CRIBI Biotechnology Centre
Tolin, Serena; University of Padua > CRIBI Biotechnology Centre
Chiti F., and Dobson C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75 (2006) 333-366
Lansbury P.T., and Lashuel H.A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443 (2006) 774-779
Bucciantini M., Giannoni E., Chiti F., Baroni F., Formigli L., Zurdo J., et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416 (2002) 507-511
Stefani M., and Dobson C.M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81 (2003) 678-699
Kodali R., and Wetzel R. Polymorphism in the intermediates and products of amyloid assembly. Curr. Opin. Struct. Biol. 17 (2007) 48-57
Pepys M.B., Hawkins P.N., Booth D.R., Vigushin D.M., Tennent G.A., Soutar A.K., et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 362 (1993) 553-557
Valleix S., Drunat S., Philit J.B., Adoue D., Piette J.C., Droz D., et al. Hereditary renal amyloidosis caused by a new variant lysozyme W64R in a French family. Kidney Int. 61 (2002) 907-912
Yazaki M., Farrell S.A., and Benson M.D. A novel lysozyme mutation Phe57Ile associated with hereditary renal amyloidosis. Kidney Int. 63 (2003) 1652-1657
Röcken C., Becker K., Fändrich M., Schroeckh V., Stix B., Rath T., et al. A Lys amyloidosis caused by compound heterozygosity in exon 2 (Thr70Asn) and exon 4 (Trp112Arg) of the lysozyme gene. Hum. Mutat. 27 (2006) 119-120
Demuro A., Mina E., Kayed R., Milton S.C., Parker I., and Glabe C.G. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 280 (2005) 17294-17300
Malisauskas M., Ostman J., Darinskas A., Zamotin V., Liutkevicius E., Lundgren E., and Morozova-Roche L.A. Does the cytotoxic effect of transient amyloid oligomers from common equine lysozyme in vitro imply innate amyloid toxicity?. J. Biol. Chem. 280 (2005) 6269-6275
Gharibyan A.L., Zamotin V., Yanamandra K., Moskaleva O.S., Margulis B.A., Kostanyan I.A., and Morozova-Roche L.A. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J. Mol. Biol. 365 (2007) 1337-1349
Vieira M.N., Forny-Germano L., Saraiva L.M., Sebollela A., Martinez A.M., Houzel J.C., et al. Soluble oligomers from a non-disease related protein mimic Abeta-induced tau hyperphosphorylation and neurodegeneration. J. Neurochem. 103 (2007) 736-748
Frare E., Mossuto M.F., Polverino de Laureto P., Dumoulin M., Dobson C.M., and Fontana A. Identification of the core structure of lysozyme amyloid fibrils by proteolysis. J. Mol. Biol. 361 (2006) 551-561
Canet D., Last A.M., Tito P., Sunde M., Spencer A., Archer D.B., et al. Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat. Struct. Biol. 9 (2002) 308-315
Dumoulin M., Canet D., Last A.M., Pardon E., Archer D.B., Muyldermans S., et al. Reduced global cooperativity is a common feature underlying the amyloidogenicity of pathogenic lysozyme mutations. J. Mol. Biol. 25 (2005) 773-788
Krebs M.R., Wilkins D.K., Chung E.W., Pitkeathly M.C., Chamberlain A.K., Zurdo J., et al. Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J. Mol. Biol. 14 (2000) 541-549
Frare E., Polverino de Laureto P., Zurdo J., Dobson C.M., and Fontana A. A highly amyloidogenic region of hen lysozyme. J. Mol. Biol. 23 (2004) 1153-1165
Haezebrouck P., Joniau M., Van Dael H., Hooke S.D., Woodruff N.D., and Dobson C.M. An equilibrium partially folded state of human lysozyme at low pH. J. Mol. Biol. 246 (1995) 382-387
Funahashi J., Takano K., Ogasahara K., Yamagata Y., and Yutani K. The structure, stability, and folding process of amyloidogenic mutant human lysozyme. J. Biochem. 120 (1996) 1216-1223
Booth D.R., Sunde M., Bellotti V., Robinson C.V., Hutchinson W.L., Fraser P.E., et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 27 (1997) 787-793
Morozova-Roche L.A., Zurdo J., Spencer A., Noppe W., Receveur V., Archer D.B., et al. Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. J. Struct. Biol. 130 (2000) 339-351
Goda S., Takano K., Yamagata Y., Maki S., Namba K., and Yutani K. Elongation in a beta-structure promotes amyloid-like fibril formation of human lysozyme. J. Biochem. 132 (2002) 655-661
Dumoulin M., Kumita J.R., and Dobson C.M. Normal and aberrant biological self-assembly: insights from studies of human lysozyme and its amyloidogenic variants. Acc. Chem. Res. 39 (2006) 603-610
Dumoulin M., Johnson R.J.K., Bellotti V., and Dobson C.M. Human lysozyme amyloidosis. In: Uversky V.N., and Fink A.L. (Eds). Protein Misfolding, Aggregation and Conformational Diseases. II. Molecular Basis of Conformational Diseases (2007), Kluwer Academic/Plenum Publishers, Dordrecht, The Netherlands 285-308
Canfield R.E., Kamerman S., Sobel H.H., and Morgan F.J. Primary structure of lysozymes from man and goose. Nat. New Biol. 232 (1971) 16-17
Gill S.G., and von Hippel P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182 (1989) 319-326
Weber G., and Young L.B. Fragmentation of bovine serum albumin by pepsin. I. The origin of the acid expansion of the albumin molecule. J. Biol. Chem. 239 (1964) 1415-1423
Semisotnov G.V., Rodionova N.A., Razgulyaev O.I., Uversky V.N., Gripas' A.F., and Gilmanshin R.I. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31 (1991) 119-128
Li A., Sowder R.C., Henderson L.E., Moore S.P., Garfinkel D.J., and Fisher R.J. Chemical cleavage at aspartyl residues for protein identification. Anal. Chem. 15 (2001) 5395-5402
Meersman F., and Dobson C.M. Probing the pressure-temperature stability of amyloid fibrils provides new insights into their molecular properties. Biochim. Biophys. Acta 1764 (2006) 452-460
Hoshi M., Sato M., Matsumoto S., Noguchi A., Yasutake K., Yoshida N., and Sato K. Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc. Natl Acad. Sci. USA 100 (2003) 6370-6375
Nandi P.K., and Nicole J.C. Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent. J. Mol. Biol. 344 (2004) 827-837
Lindgren M., Sörgjerd K., and Hammarström P. Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophys. J. 88 (2005) 4200-4212
Steinhaus H. Mathematical Snapshots. 3rd edit. (1999), Dover, Mineola, NY 202-203
Orte A., Birkett N.R., Clarke R.W., Devlin G.L., Dobson C.M., and Klenerman D. Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. Proc. Natl Acad. Sci. USA 105 (2008) 14424-14429
Kahle P.J., Neumann M., Ozmen L., Müller V., Odoy S., Okamoto N., et al. Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am. J. Pathol. 159 (2001) 2215-2225
Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416 (2002) 535-539
Sharon R., Bar-Joseph I., Frosch M.P., Walsh D.M., Hamilton J.A., and Selkoe D.J. The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 37 (2003) 583-595
LeVine H. Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2 (1993) 404-410
Ahmad A., Uversky V.N., Hong D., and Fink A.L. Early events in the fibrillation of monomeric insulin. J. Biol. Chem. 280 (2005) 42669-42675
Byler D.M., and Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25 (1986) 469-487
Arrondo J.L., Castresana J., Valpuesta J.M., and Goni F.M. Structure and thermal denaturation of crystalline and noncrystalline cytochrome oxidase as studied by infrared spectroscopy. Biochemistry 33 (1994) 11650-11655
García-García J., Corbalan-Garcia S., and Gomez-Fernandez J.C. Effect of calcium and phosphatidic acid binding on the C2 domain of PKC alpha as studied by Fourier transform infrared spectroscopy. Biochemistry 38 (1999) 9667-9675
Chung E.W., Nettleton E.J., Morgan C.J., Gross M., Miranker A., Radford S.E., et al. Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Sci. 6 (1997) 1316-1324
Krimm S., and Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv. Protein Chem. 38 (1986) 181-364
Surewicz W.K., and Mantsch H.H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta 952 (1988) 115-130
Blake C.C., Pulford W.C., and Artymiuk P.J. X-ray studies of water in crystals of lysozyme. J. Mol. Biol. 167 (1983) 693-723
Redfield C., and Dobson C.M. 1H NMR studies of human lysozyme: spectral assignment and comparison with hen lysozyme. Biochemistry 29 (1990) 7201-7214
Zandomeneghi G., Krebs M.R., McCammon M.G., and Fändrich M. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci. 13 (2004) 3314-3321
Schägger H., and Von Jagow G. Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 kDa to 100 kDa. Anal. Biochem. 166 (1987) 368-379
Fontana A., Polverino de Laureto P., De Filippis V., Scaramella E., and Zambonin M. Probing the partly folded states of proteins by limited proteolysis. Folding Des. 2 (1997) R17-R26
Hubbard S.J. The structural aspects of limited proteolysis of native proteins. Biochim. Biophys. Acta 1382 (1998) 191-206
Fontana A., Polverino de Laureto P., Spolaore B., Frare E., Picotti P., and Zambonin M. Probing protein structure by limited proteolysis. Acta Biochim. Pol. 51 (2004) 299-321
Fruton J.S. The specificity and mechanism of pepsin action. Adv. Enzymol. Relat. Areas Mol. Biol. 33 (1970) 401-443
Schwalbe H., Fiebig K.M., Buck M., Jones J.A., Grimshaw S.B., Spencer A., et al. Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry 36 (1997) 8977-8991
Yerbury J.J., Poon S., Meehan S., Thompson B., Kumita J.R., Dobson C.M., and Wilson M.R. The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J. 21 (2007) 2312-2322
Kumita J.R., Poon S., Caddy G.L., Hagan C.L., Dumoulin M., Yerbury J.J., et al. The extracellular chaperone clusterin potently inhibits human lysozyme amyloid formation by interacting with prefibrillar species. J. Mol. Biol. 369 (2007) 157-167
Kumar S., Ravi V.K., and Swaminathan R. How do surfactants and DTT, affect the size, dynamics, activity and growth of soluble lysozyme aggregates?. Biochem. J. 415 (2008) 275-288
Cheon M., Chang I., Mohanty S., Luheshi L.M., Dobson C.M., Vendruscolo M., and Favrin G. Structural reorganisation and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils. PLoS Comput. Biol. 3 (2007) 1727-1738
Zurdo J., Guijarro J.I., and Dobson C.M. Preparation and characterization of purified amyloid fibrils. J. Am. Chem. Soc. 123 (2001) 8141-8142
Polverino de Laureto P., Taddei N., Frare E., Capanni C., Costantini S., Zurdo J., et al. Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. J. Mol. Biol. 334 (2003) 129-141
Dirix C., Meersman F., MacPhee C.E., Dobson C.M., and Heremans K. High hydrostatic pressure dissociates early aggregates of TTR105-115, but not the mature amyloid fibrils. J. Mol. Biol. 347 (2005) 903-909
Bitan G., Kirkitadze M.D., Lomakin A., Vollers S.S., Benedek G.B., and Teplow D.B. Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc. Natl Acad. Sci. USA 100 (2003) 330-335
Elias H.-G. An Introduction to Plastics. 2nd edit. (2003), Wiley-VCH, Weinheim, Germany