Paper published in a book (Scientific congresses and symposiums)
Real-Time Bidding Strategies from Micro-Grids Using Reinforcement Learning
Boukas, Ioannis; Ernst, Damien; Cornélusse, Bertrand
2018In Proceedings of CIRED Workshop 2018
Peer reviewed
 

Files


Full Text
CIRED_Boukas.pdf
Publisher postprint (239.75 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
reinforcement learning; microgrids; electricity markets
Abstract :
[en] We address the problem faced by the operator of a microgrid participating in a continuous real-time market. The microgrid consists of distributed generation, flexible loads and a storage device. The goal of the microgrid operator is the maximization of the profits over the entire trading horizon, while taking into account operational constraints. The variability of the Renewable Energy Sources (RES) is considered and the energy trading is modeled as a Markov Decision Process. The problem is solved using reinforcement learning (RL). The resulting optimal real time bidding strategy of a microgrid is discussed.
Disciplines :
Energy
Author, co-author :
Boukas, Ioannis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Cornélusse, Bertrand  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
Language :
English
Title :
Real-Time Bidding Strategies from Micro-Grids Using Reinforcement Learning
Publication date :
June 2018
Event name :
CIRED Workshop 2018
Event date :
from 7-6-2018 to 8-6-2018
Audience :
International
Main work title :
Proceedings of CIRED Workshop 2018
Peer reviewed :
Peer reviewed
Available on ORBi :
since 12 May 2018

Statistics


Number of views
561 (48 by ULiège)
Number of downloads
554 (21 by ULiège)

Bibliography


Similar publications



Contact ORBi