[en] This review reports the recent advances in the most important and straightforward synthetic protocols for incorporating catechols into (bio)polymers, and discusses the emerging applications of these innovative multifunctional materials in biomedical, energy storage and environmental applications. In the last five years, new well-defined polymer structures with tuneable composition and functionality were introduced by the careful combination of catechol protection/deprotection chemistry with controlled polymerization techniques. These new synthetic pathways have facilitated the optimal design of the material that perfectly fits the target application. Although most current researches exploit the adhesive properties of catechols for designing glues or (multi)functional coatings, recent breakthroughs have shown that catechols have much more to offer in other areas, especially those where they act as reversible redox units to store electrons/metal cations for the design of “next-generation” safe, economical and sustainable energy storage devices. These emerging applications of potential high impact in our daily life are now discussed in this review together with the new synthetic routes to unprecedented precise catechol-bearing polymers. Additional objectives of this review are to discuss some important critical issues regarding the stability and reactivity of catechols, and to propose our vision for the future development of this field.
Research Center/Unit :
CESAM Complex and Entangled Systems from Atoms to Materials (CESAM) Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Patil, Nagaraj; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment
Publication date :
July 2018
Journal title :
Progress in Polymer Science
ISSN :
0079-6700
eISSN :
1873-1619
Publisher :
Elsevier, Netherlands
Volume :
82
Pages :
34-91
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique CE - Commission Européenne BELSPO - Politique scientifique fédérale
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Faure, E., Falentin-Daudré, C., Jérôme, C., Lyskawa, J., Fournier, D., Woisel, P., et al. Catechols as versatile platforms in polymer chemistry. Prog Polym Sci 38 (2013), 236–270, 10.1016/j.progpolymsci.2012.06.004.
Sedó, J., Saiz-Poseu, J., Busqué, F., Ruiz-Molina, D., Catechol-Based biomimetic functional materials. Adv Mater 25 (2013), 653–701, 10.1002/adma.201202343.
Krogsgaard, M., Nue, V., Birkedal, H., Mussel-inspired materials: self-healing through coordination chemistry. Chem A Eur J 22 (2016), 844–857, 10.1002/chem.201503380.
Lee, B.P., Messersmith, P.B., Israelachvili, J.N., Waite, J.H., Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41 (2011), 99–132, 10.1146/annurev-matsci-062910-100429.
Ye, Q., Zhou, F., Liu, W., Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40 (2011), 4244–4258, 10.1039/c1cs15026j.
Zhang, H., Zhao, T., Newland, B., Liu, W., Wang, W., Wang, W., Catechol functionalized hyperbranched polymers as biomedical materials. Prog Polym Sci 35 (2017), 1566–1572, 10.1016/j.progpolymsci.2017.09.002.
Dai, J., Mumper, R.J., Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15 (2010), 7313–7352, 10.3390/molecules15107313.
Rodríguez, H., Curiel, J.A., Landete, J.M., de las Rivas, B., de Felipe, F.L., Gómez- Cordovés, C., et al. Food phenolics and lactic acid bacteria. Int J Food Microbiol 132 (2009), 79–90, 10.1016/j.ijfoodmicro.2009.03.025.
Crozier, A., Jaganath, I.B., Clifford, M.N., Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26 (2009), 1001–1043, 10.1039/b802662a.
Manach, C., Scalbert, A., Morand, C., Rémésy, C., Jiménez, L., Polyphenols: food sources and bioavailability. Am J Clin Nutr 79 (2004), 727–747, 10.1038/nature05488.
Quideau, S., Deffieux, D., Douat-Casassus, C., Pouységu, L., Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50 (2011), 586–621, 10.1002/anie.201000044.
Yu, M., Hwang, J., Deming, T.J., Role of l-3, 4- dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 121 (1999), 5825–5826, 10.1021/ja990469y.
Wang, C.S., Stewart, R.J., Multipart copolyelectrolyte adhesive of the sandcastle worm, Phragmatopoma californica (Fewkes): catechol oxidase catalyzed curing through peptidyl-DOPA. Biomacromolecules 14 (2013), 1607–1617, 10.1021/bm400251k.
Miserez, A., Schneberk, T., Sun, C., Zok, F.W., Waite, J.H., The transition from stiff to compliant materials in squid beaks. Science 319 (2008), 1816–1819, 10.1126/science.1154117.
Waite, J.H., Tanzer, M.L., Polyphenolic substance of mytilus edulis: novel adhesive containing L-Dopa and hydroxyproline. Science 212 (1981), 1038–1040, 10.1126/science.212.4498.1038.
Marcus, R.A., Sutin, N., Electron transfers in chemistry and biology. Biochim Biophys Acta Rev Bioenerg 811 (1985), 265–322, 10.1016/0304-4173(85)90014-X.
Meyer, T.J., Huynh, M.H. V, Thorp, H.H., The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew Chem Int Ed 6 (2007), 5284–5304, 10.1002/anie.200600917.
Kord Forooshani, P., Lee, B.P., Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J Polym Sci Part A Polym Chem 55 (2017), 9–33, 10.1002/pola.28368.
Schnurrer, J., Lehr, C.M., Mucoadhesive properties of the mussel adhesive protein. Int J Pharm 141 (1996), 251–256, 10.1016/0378-5173(96)04625-X.
Coombs, T.L., Keller, P.J., Mytilus byssal threads as an environmental marker for metals. Aquat Toxicol 1 (1981), 291–300, 10.1016/0166-445X(81)90023-0.
Baty, A.M., Leavitt, P.K., Siedlecki, C.A., Tyler, B.J., Suci, P.A., Marchant, R.E., et al. Adsorption of adhesive proteins from the marine mussel, Mytilus edulis, on polymer films in the hydrated state using angle dependent X-ray photoelectron spectroscopy and atomic force microscopy. Langmuir 13 (1997), 5702–5710, 10.1021/la9610720.
Lu, Q., Oh, D.X., Lee, Y., Jho, Y., Hwang, D.S., Zeng, H., Nanomechanics of cation-π interactions in aqueous solution. Angew Chem Int Ed 52 (2013), 3944–3948, 10.1002/anie.201210365.
Pillai, K.V., Renneckar, S., Cation-π interactions as a mechanism in technical lignin adsorption to cationic surfaces. Biomacromolecules 10 (2009), 798–804, 10.1021/bm801284y.
Dalsin, J.L., Hu, B.H., Lee, B.P., Messersmith, P.B., Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125 (2003), 4253–4258, 10.1021/ja0284963.
Dalsin, J.L., Lin, L., Tosatti, S., Vörös, J., Textor, M., Messersmith, P.B., Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir 21 (2005), 640–646, 10.1021/la048626g.
Tyson, C.A., Martell, A.E., Equilibriums of metal ions with pyrocatechol and 3, 5-di-tert-butylpyrocatechol. J Am Chem Soc 90 (1968), 3379–3386, 10.1021/ja01015a015.
Sommer, L., Titanium (IV) complexes with ligands having oxygen donor atoms in aqueous solutions. Zeit Anorg Allg Chem 21 (1963), 191–197, 10.1002/zaac.19633210311.
Borgias, B.A., Cooper, S.R., Koh, Y.B., Raymond, K.N., Synthetic, structural, and physical studies of titanium complexes of catechol and 3, 5-di-tert-butylcatechol. Inorg Chem 23 (1984), 1009–1016, 10.1021/ic00176a005.
Sever, M.J., Wilker, J.J., Absorption spectroscopy and binding constants for first-row transition metal complexes of a DOPA-containing peptide. Dalt Trans, 2006, 813–822, 10.1039/B509586G.
Avdeef, A., Sofen, S.R., Bregante, T.L., Raymond, K.N., Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J Am Chem Soc 100 (1978), 5362–5370, 10.1021/ja00485a018.
Taylor, S.W., Chase, D.B., Emptage, M.H., Nelson, M.J., Waite, J.H., Ferric ion complexes of a DOPA-Containing adhesive protein from mytilus edulis. Inorg Chem 35 (1996), 7572–7577, 10.1021/ic960514s.
Maier, G.P., Butler, A., Siderophores and mussel foot proteins: the role of catechol, cations, and metal coordination in surface adhesion. J Biol Inorg Chem 22 (2017), 739–749, 10.1007/s00775- 017-1451-6.
Ferguson, A.D., Hofmann, E., Coulton, J.W., Diederichs, K., Welte, W., Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282 (1998), 2215–2220, 10.1126/science.282.5397.2215.
Miethke, M., Marahiel, M.A., Siderophore-Based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71 (2007), 413–451, 10.1128/MMBR.00012-07.
Yoshino, K., Kotaka, M., Okamoto, M., Kakihana, H., 11B-NMR study of the complex formation of borate with catechol and L-dopa. Bull Chem Soc Jpn 52 (1979), 3005–3009, 10.1246/bcsj.52.3005.
Guin, P.S., Das, S., Mandal, P.C., Electrochemical reduction of quinones in different media: a review. Int J Electrochem 816202 (2011), 1–22, 10.4061/2011/816202.
McDowell, L.M., Rotational echo double resonance detection of cross-links formed in mussel byssus under high-flow stress. J Biol Chem 274 (1999), 20293–20295, 10.1074/jbc.274.29.20293.
Yang, J., Cohen Stuart, M.A., Kamperman, M., Jack of all trades: versatile catechol crosslinking mechanisms. Chem Soc Rev 43 (2014), 8271–8298, 10.1039/c4cs00185k.
Son, E.J., Kim, J.H., Kim, K., Park, C.B., Quinone and its derivatives for energy harvesting and storage materials. J Mater Chem A 4 (2016), 11179–11202, 10.1039/C6TA03123D.
Häupler, B., Wild, A., Schubert, U.S., Carbonyls: powerful organic materials for secondary batteries. Adv Energy Mater 5 (2015), 1–34, 10.1002/aenm.201402034 1402034.
Kim, Y.J., Wu, W., Chun, S.-E., Whitacre, J.F., Bettinger, C.J., Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells. Adv Mater 26 (2014), 6572–6579, 10.1002/adma.201402295.
Liu, Y., Ai, K., Lu, L., Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114 (2014), 5057–5115, 10.1021/cr400407a.
Yamamoto, H., Ohkawa, K., Synthesis of adhesive protein from the vitellaria of the liver flukeFasciola hepatica. Amino Acids 5 (1993), 71–75, 10.1007/BF00806193.
Kang, S.M., Park, S., Kim, D., Park, S.Y., Ruoff, R.S., Lee, H., Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Adv Funct Mater 21 (2011), 108–112, 10.1002/adfm.201001692.
Yang, D., Wang, X., Ai, Q., Shi, J., Jiang, Z., Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly(dopamine) and poly(norepinephrine). RSC Adv 5 (2015), 42461–42467, 10.1039/C5RA02420J.
Hu, H., Dyke, J.C., Bowman, B.A., Ko, C.-C., You, W., Investigation of dopamine analogues: synthesis, mechanistic understanding, and structure–property relationship. Langmuir 32 (2016), 9873–9882, 10.1021/acs.langmuir.6b02141.
Rote, J.C., Malkowski, S.N., Cochrane, C.S., Bailey, G.E., Brown, N.S., Cafiero, M., et al. Catechol reactivity: synthesis of dopamine derivatives substituted at the 6-position. Synth Commun 47 (2017), 435–441, 10.1080/00397911.2016.1269350.
Lyu, Q., Zhang, J., Neoh, K.G., Li, Lin, Chai, C., A one step method for the functional and property modification of DOPA based nanocoatings. Nanoscale 9 (2017), 12409–12415, 10.1039/C7NR05293F.
Dreyer, D.R., Miller, D.J., Freeman, B.D., Paul, D.R., Bielawski, C.W., Elucidating the structure of poly(dopamine). Langmuir 28 (2012), 6428–6435, 10.1021/la204831b.
Barclay, T.G., Hegab, H.M., Clarke, S.R., Ginic-Markovic, M., Versatile surface modification using polydopamine and related polycatecholamines: chemistry, structure, and applications. Adv Mater Interfaces 4 (2017), 1–38, 10.1002/admi.201601192 1601192.
Chen, K., Xu, X., Guo, J., Zhang, X., Han, S., Wang, R., et al. Enhanced intracellular delivery and tissue retention of nanoparticles by mussel-inspired surface chemistry. Biomacromolecules 16 (2015), 3574–3583, 10.1021/acs.biomac.5b01056.
Holten-Andersen, N., Jaishankar, A., Harrington, M.J., Fullenkamp, D.E., DiMarco, G., He, L., et al. Metal-coordination: using one of nature's tricks to control soft material mechanics. J Mater Chem B 2 (2014), 2467–2472, 10.1039/C3TB21374A.
İ, Kırpat, Göksel, Y., Karakuş, E., Emrullahoğlu, M., Akdogan, Y., Determination of force-free wet adhesion of mussel-inspired polymers to spin labeled surface. Mater Lett 205 (2017), 48–51, 10.1016/j.matlet.2017.06.060.
Wei, Q., Becherer, T., Noeske, P.L.M., Grunwald, I., Haag, R., A universal approach to crosslinked hierarchical polymer multilayers as stable and highly effective antifouling coatings. Adv Mater 26 (2014), 2688–2693, 10.1002/adma.201304737.
Kim, S., Moon, J.M., Choi, J.S., Cho, W.K., Kang, S.M., Mussel-inspired approach to constructing robust multilayered alginate films for antibacterial applications. Adv Funct Mater 26 (2016), 4099–4105, 10.1002/adfm.201600613.
Fan, C., Fu, J., Zhu, W., Wang, D.-A., A mussel-inspired double-crosslinked tissue adhesive intended for internal medical use. Acta Biomater 33 (2016), 51–63, 10.1016/j.actbio.2016.02.003.
Ochs, C.J., Hong, T., Such, G.K., Cui, J., Postma, A., Caruso, F., Dopamine-mediated continuous assembly of biodegradable capsules. Chem Mater 23 (2011), 3141–3143, 10.1021/cm201390e.
Lee, M., Kim, Y., Ryu, J.H., Kim, K., Han, Y.-M., Lee, H., Long- term, feeder-free maintenance of human embryonic stem cells by mussel-inspired adhesive heparin and collagen type I. Acta Biomater 32 (2016), 138–148, 10.1016/j.actbio.2016.01.008.
Lee, J., Yoo, K.C., Ko, J., Yoo, B., Shin, J., Lee, S.-J., et al. Hollow hyaluronic acid particles by competition between adhesive and cohesive properties of catechol for anticancer drug carrier. Carbohydr Polym 164 (2017), 309–316, 10.1016/j.carbpol.2017.02.009.
Shin, M., Park, S.-G., Oh, B.-C., Kim, K., Jo, S., Lee, M.S., et al. Complete prevention of blood loss with self- sealing haemostatic needles. Nat Mater 1 (2016), 1–8, 10.1038/nmat4758.
Wang, Z., Kang, H., Zhang, W., Zhang, S., Li, J., Improvement of interfacial adhesion by bio-inspired catechol-functionalized soy protein with versatile reactivity: preparation of fully utilizable soy-based film. Polymers (Basel) 9:95 (2017), 1–14, 10.3390/polym9030095.
Nie, C., Cheng, C., Ma, L., Deng, J., Zhao, C., Mussel-inspired antibacterial and biocompatible silver-carbon nanotube composites: green and universal nanointerfacial functionalization. Langmuir 32 (2016), 5955–5965, 10.1021/acs.langmuir.6b00708.
Ryu, S., Lee, Y., Hwang, J.W., Hong, S., Kim, C., Park, T.G., et al. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv Mater 23 (2011), 1971–1975, 10.1002/adma.201004228.
Yang, B., Lv, Y., Zhu, J.Y., Han, Y.T., Jia, H.Z., Chen, W.H., et al. A pH-responsive drug nanovehicle constructed by reversible attachment of cholesterol to PEGylated poly(l-lysine) via catechol-boronic acid ester formation. Acta Biomater 10 (2014), 3686–3695, 10.1016/j.actbio.2014.05.018.
Lim, S., Nguyen, M.P., Choi, Y., Kim, J., Kim, D., Bioadhesive nanoaggregates based on polyaspartamide-g-C18/DOPA for wound healing. Biomacromolecules 18 (2017), 2402–2409, 10.1021/acs.biomac.7b00584.
Shi, D., Liu, R., Dong, W., Li, X., Zhang, H., Chen, M., et al. pH-dependent and self-healing properties of mussel modified poly(vinyl alcohol) hydrogels in a metal-free environment. RSC Adv 5 (2015), 82252–82258, 10.1039/C5RA15991A.
Xu, L.Q., Pranantyo, D., Liu, J.B., Neoh, K.-G., Kang, E.-T., Ng, Y.X., et al. Layer- by-layer deposition of antifouling coatings on stainless steel via catechol-amine reaction. RSC Adv 4 (2014), 32335–32344, 10.1039/C4RA04336G.
Li, L., Yan, B., Yang, J., Huang, W., Chen, L., Zeng, H., Injectable self-healing hydrogel with antimicrobial and antifouling properties. ACS Appl Mater Interfaces 9 (2017), 9221–9225, 10.1021/acsami.6b16192.
Lee, S., Kim, H., Chae, S., Sohn, B.-H., Diblock copolymer micelles as surface-functionalized particles and direct decoration of nanoparticles on their surface. Polymer (Guildf) 61 (2015), 15–19, 10.1016/j.polymer.2015.01.067.
Duan, L.J., Liu, Y., Kim, J., Chung, D.J., Bioinspired and biocompatible adhesive coatings using poly(acrylic acid)-grafted dopamine. J Appl Polym Sci 130 (2013), 131–137, 10.1002/app.39133.
Ding, X., Vegesna, G.K., Meng, H., Winter, A., Lee, B.P., Nitro-group functionalization of dopamine and its contribution to the viscoelastic properties of catechol-containing nanocomposite hydrogels. Macromol Chem Phys 216 (2015), 1109–1119, 10.1002/macp.201500010.
Jia, Y.-G., Zhu, X.X., Nanocomposite hydrogels of LAPONITE® mixed with polymers bearing dopamine and cholic acid pendants. RSC Adv 6 (2016), 23033–23037, 10.1039/C5RA26316F.
Wang, R., Li, J., Chen, W., Xu, T., Yun, S., Xu, Z., et al. A biomimetic mussel-inspired ε-Poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity. Adv Funct Mater 27 (2017), 1–13, 10.1002/adfm.201604894 1604894.
Xu, Y.J., Wei, K., Zhao, P., Feng, Q., Choi, C.K.K., Bian, L., Preserving the adhesion of catechol- conjugated hydrogels by thiourea–quinone coupling. Biomater Sci 4 (2016), 1726–1730, 10.1039/C6BM00434B.
Park, J.Y., Yeom, J., Kim, J.S., Lee, M., Lee, H., Nam, Y.S., Cell-repellant dextran coatings of porous titania using mussel adhesion chemistry. Macromol Biosci 13 (2013), 1511–1519, 10.1002/mabi.201300224.
Liu, Y., Demirci, A., Zhu, H., Cai, J., Yamamoto, S., Watanabe, A., et al. A versatile platform of catechol-functionalized polysiloxanes for hybrid nanoassembly and in situ surface enhanced Raman scattering applications. J Mater Chem C 4 (2016), 8903–8910, 10.1039/C6TC02963A.
Heo, J., Kang, T., Jang, S.G., Hwang, D.S., Spruell, J.M., Killops, K.L., et al. Improved performance of protected catecholic polysiloxanes for bioinspired wet adhesion to surface oxides. J Am Chem Soc 134 (2012), 20139–20145, 10.1021/ja309044z.
Mu, Y., Wu, Z., Ma, Y., Zheng, J., Zhang, W., Sun, Z., et al. Robust mussel-inspired coatings for controlled zinc ion release. J Mater Chem B 5 (2017), 1742–1752, 10.1039/C6TB03176E.
Kim, S.H., Lee, S., In, I., Park, S.Y., Synthesis and antibacterial activity of surface-coated catechol-conjugated polymer with silver nanoparticles on versatile substrate. Surf Interface Anal 48 (2016), 995–1001, 10.1002/sia.6004.
Chapala, P.P., Bermeshev, M.V., Korchagina, S.A., Ashirov, R.V., Bermesheva, E.V., Synthesis of 3,4-dihydroxyphenyl-containing polymeric materials from 1,2-polybutadiene and eugenol via thiol–ene addition. Russ Chem Bull 65 (2016), 1061–1066, 10.1007/s11172-016-1413-0.
Guo, Z., Ni, K., Wei, D., Ren, Y., Fe3+-induced oxidation and coordination cross- linking in catechol–chitosan hydrogels under acidic pH conditions. RSC Adv 5 (2015), 37377–37384, 10.1039/C5RA03851K.
Yuan, C., Chen, J., Yu, S., Chang, Y., Mao, J., Xu, Y., et al. Protein-responsive assemblies from catechol–metal ion supramolecular coordination. Soft Matter 11 (2015), 2243–2250, 10.1039/C4SM02528H.
Li, A., Mu, Y., Jiang, W., Wan, X., A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions. Chem Commun 51 (2015), 9117–9120, 10.1039/C5CC00101C.
Wei, Q., Achazi, K., Liebe, H., Schulz, A., Noeske, P.-L.M., Grunwald, I., et al. Mussel-inspired dendritic polymers as universal multifunctional coatings. Angew Chem Int Ed 53 (2014), 11650–11655, 10.1002/anie.201407113.
Gong, C., Lu, C., Li, B., Shan, M., Wu, G., Injectable dopamine-modified poly(α, β-aspartic acid) nanocomposite hydrogel as bioadhesive drug delivery system. J Biomed Mater Res Part A 105 (2017), 1000–1008, 10.1002/jbm.a.35931.
Mu, Y., Wan, X., Simple but strong: a mussel-inspired hot curing adhesive based on polyvinyl alcohol backbone. Macromol Rapid Commun 37 (2016), 545–550, 10.1002/marc.201500723.
Niu, J., Lunn, D.J., Pusuluri, A., Yoo, J.I., O'Malley, M.A., Mitragotri, S., et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat Chem 9 (2017), 537–545, 10.1038/nchem.2713.
Song, Y., Ye, G., Lu, Y., Chen, J., Wang, J., Matyjaszewski, K., Surface-initiated ARGET ATRP of Poly(Glycidyl methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions. ACS Macro Lett 5 (2016), 382–386, 10.1021/acsmacrolett.6b00099.
Song, Y., Ye, G., Wu, F., Wang, Z., Liu, S., Kopeć, M., et al. Bioinspired polydopamine (PDA) chemistry meets ordered mesoporous carbons (OMCs): a benign surface modification strategy for versatile functionalization. Chem Mater 28 (2016), 5013–5021, 10.1021/acs.chemmater.6b01729.
Song, Y., Ye, G., Wang, Z., Kopeć, M., Xie, G., Yuan, R., et al. Controlled preparation of well-defined mesoporous carbon/polymer hybrids via surface-initiated ICAR ATRP with a high dilution strategy assisted by facile polydopamine chemistry. Macromolecules 49 (2016), 8943–8950, 10.1021/acs.macromol.6b01998.
Kim, J.Y., Lee, B.S., Choi, J., Kim, B.J., Choi, J.Y., Kang, S.M., et al. Cytocompatible polymer grafting from individual living cells by atom-transfer radical polymerization. Angew Chem Int Ed 55 (2016), 15306–15309, 10.1002/anie.201608515.
Watanabe, H., Fujimoto, A., Yamamoto, R., Nishida, J., Kobayashi, M., Takahara, A., Scaffold for growing dense polymer brushes from a versatile substrate. ACS Appl Mater Interfaces 6 (2014), 3648–3653, 10.1021/am405965s.
Wang, J., Wei, J., Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling. Appl Surf Sci 382 (2016), 202–216, 10.1016/j.apsusc.2016.03.223.
Luo, J., Zhao, F., Fei, X., Liu, X., Liu, J., Mussel inspired preparation of polymer grafted graphene as a bridge between covalent and noncovalent methods. Chem Eng J 293 (2016), 171–181, 10.1016/j.cej.2016.02.057.
Yu, B.Y., Zheng, J., Chang, Y., Sin, M.C., Chang, C.H., Higuchi, A., et al. Surface zwitterionization of titanium for a general bio-inert control of plasma proteins, blood cells, tissue cells, and bacteria. Langmuir 30 (2014), 7502–7512, 10.1021/la500917s.
Ma, S., Ye, Q., Pei, X., Wang, D., Zhou, F., Antifouling on gecko's feet inspired fibrillar surfaces: evolving from land to marine and from liquid repellency to algae resistance. Adv Mater Interfaces 2 (2015), 1–12, 10.1002/admi.201500257.
Oz, Y., Arslan, M., Gevrek, T.N., Sanyal, R., Sanyal, A., Modular fabrication of polymer brush coated magnetic nanoparticles: engineering the interface for targeted cellular imaging. ACS Appl Mater Interfaces 8 (2016), 19813–19826, 10.1021/acsami.6b04664.
Wang, D., Ye, Q., Yu, B., Zhou, F., Towards chemically bonded p?n heterojunctions through surface initiated electrodeposition of p-type conducting polymer inside TiO2 nanotubes. J Mater Chem 20 (2010), 6910–6915, 10.1039/c0jm00743a.
Ye, Q., Zhao, W., Yang, W., Pei, X., Zhou, F., Grafting binary PEG and fluoropolymer brushes from mix-biomimic initiator as ambiguous surfaces for antibiofouling. Macromol Chem Phys 218 (2017), 1–6, 10.1002/macp.201700085 1700085.
Zhao, W., Ye, Q., Hu, H., Wang, X., Zhou, F., Fabrication of binary components based on a poly (ionic liquid) through grafting and clicking and their synergistic antifouling activity. RSC Adv 5 (2015), 100347–100353, 10.1039/C5RA23391G.
Zhang, Q., Nurumbetov, G., Simula, A., Zhu, C., Li, M., Wilson, P., et al. Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles. Polym Chem 7 (2016), 7002–7010, 10.1039/C6PY01709F.
Phillips, D.J., Davies, G.-L., Gibson, M.I., Siderophore-inspired nanoparticle-based biosensor for the selective detection of Fe 3+. J Mater Chem B 3 (2015), 270–275, 10.1039/C4TB01501 K.
Phillips, D.J., Prokes, I., Davies, G.L., Gibson, M.I., Isothermally-responsive polymers triggered by selective binding of Fe3+ to siderophoric catechol end-groups. ACS Macro Lett 3 (2014), 1225–1229, 10.1021/mz500686w.
Wang, P.-X., Dong, Y.-S., Lu, X.-W., Du, J., Wu, Z.-Q., Marrying mussel inspired chemistry with photoiniferters: a novel strategy for surface functionalization. Polym Chem 7 (2016), 5563–5570, 10.1039/C6PY01223J.
Arslan, M., Gevrek, T.N., Lyskawa, J., Szunerits, S., Boukherroub, R., Sanyal, R., et al. Bioinspired anchorable thiol-reactive polymers: synthesis and applications toward surface functionalization of magnetic nanoparticles. Macromolecules 47 (2014), 5124–5134, 10.1021/ma500693f.
Thomas, A., Bauer, H., Schilmann, A.M., Fischer, K., Tremel, W., Frey, H., The needle in the haystack makes the difference: linear and hyperbranched polyglycerols with a single catechol moiety for metal oxide nanoparticle coating. Macromolecules 47 (2014), 4557–4566, 10.1021/ma5003672.
Lee, H.J., Koo, A.N., Lee, S.W., Lee, M.H., Lee, S.C., Catechol-functionalized adhesive polymer nanoparticles for controlled local release of bone morphogenetic protein-2 from titanium surface. J Control Release 170 (2013), 198–208, 10.1016/j.jconrel.2013.05.017.
Coumes, F., Malfait, A., Bria, M., Lyskawa, J., Woisel, P., Fournier, D., Catechol/boronic acid chemistry for the creation of block copolymers with a multi-stimuli responsive junction. Polym Chem 7 (2016), 4682–4692, 10.1039/C6PY00738D.
Coumes, F., Woisel, P., Fournier, D., Facile access to multistimuli-responsive self-assembled block copolymers via a catechol/boronic acid ligation. Macromolecules 49 (2016), 8925–8932, 10.1021/acs.macromol.6b01889.
Na Bin, H., Palui, G., Rosenberg, J.T., Ji, X., Grant, S.C., Mattoussi, H., Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 6 (2012), 389–399, 10.1021/nn203735b.
Lee, B.P., Huang, K., Nunalee, F.N., Shull, K.R., Messersmith, P.B., Synthesis of 3, 4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG-diacrylate to form hydrogels. J Biomater Sci Polym Ed 15 (2004), 449–464, 10.1163/156856204323005307.
Kharasch, M.S., Kawahara, F., Nudenberg, W., The mechanism of action of inhibitors in free radical initiated polymerizations at low temperatures 1. J Org Chem 19 (1954), 1977–1990, 10.1021/jo01377a015.
Hou, S., Ma, P.X., Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry. Chem Mater 27 (2015), 7627–7635, 10.1021/acs.chemmater.5b02839.
Guo, R., Su, Q., Zhang, J., Dong, A., Lin, C., Zhang, J., Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages. Biomacromolecules 18 (2017), 1356–1364, 10.1021/acs.biomac.7b00089.
Gao, Z., Duan, L., Yang, Y., Hu, W., Gao, G., Mussel-inspired tough hydrogels with self-repairing and tissue adhesion. Appl Surf Sci 427 (2018), 74–82, 10.1016/j.apsusc.2017.08.157.
Ham, H.O., Liu, Z., Lau, K.H.A., Lee, H., Messersmith, P.B., Facile DNA immobilization on surfaces through a catecholamine polymer. Angew Chem Int Ed 50 (2011), 732–736, 10.1002/anie.201005001.
Sasikala, A.R.K., GhavamiNejad, A., Unnithan, A.R., Thomas, R.G., Moon, M., Jeong, Y.Y., et al. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia. Nanoscale 7 (2015), 18119–18128, 10.1039/C5NR05844A.
Nguyen, H.N., Nadres, E.T., Alamani, B.G., Rodrigues, D.F., Designing polymeric adhesives for antimicrobial materials: poly(ethylene imine) polymer, graphene, graphene oxide and molybdenum trioxide – a biomimetic approach. J Mater Chem B 5 (2017), 6616–6628, 10.1039/C7TB00722A.
White, E.M., Seppala, J.E., Rushworth, P.M., Ritchie, B.W., Sharma, S., Locklin, J., Switching the adhesive state of catecholic hydrogels using phototitration. Macromolecules 46 (2013), 8882–8887, 10.1021/ma401594z.
Vatankhah-Varnoosfaderani, M., Hashmi, S., GhavamiNejad, A., Stadler, F.J., Rapid self-healing and triple stimuli responsiveness of a supramolecular polymer gel based on boron–catechol interactions in a novel water-soluble mussel-inspired copolymer. Polym Chem 5 (2014), 512–523, 10.1039/c3py00788j.
Vatankhah-Varnoosfaderani, M., GhavamiNejad, A., Hashmi, S., Stadler, F.J., Hydrogen bonding in aprotic solvents, a new strategy for gelation of bioinspired catecholic copolymers with N-isopropylamide. Macromol Rapid Commun 36 (2015), 447–452, 10.1002/marc.201400501.
GhavamiNejad, A., Hashmi, S., Vatankhah- Varnoosfaderani, M., Stadler, F.J., Effect of H2O and reduced graphene oxide on the structure and rheology of self-healing, stimuli responsive catecholic gels. Rheol Acta 55 (2016), 163–176, 10.1007/s00397- 015-0906-3.
Vatankhah-Varnoosfaderani, M., Hashmi, S., Stadler, F.J., GhavamiNejad, A., Mussel- inspired 3D networks with stiff-irreversible or soft-reversible characteristics − It's all a matter of solvent. Polym Test 62 (2017), 96–101, 10.1016/j.polymertesting.2017.06.007.
Chen, J., Su, Q., Guo, R., Zhang, J., Dong, A., Lin, C., et al. A multitasking hydrogel based on double dynamic network with quadruple-stimuli sensitiveness, autonomic self-healing property, and biomimetic adhesion ability. Macromol Chem Phys 218 (2017), 1–9, 10.1002/macp.201700166 1700166.
Vatankhah-Varnoosfaderani, M., Ina, M., Adelnia, H., Li, Q., Zhushma, A.P., Hall, L.J., et al. Well-defined zwitterionic microgels: synthesis and application as acid-resistant microreactors. Macromolecules 49 (2016), 7204–7210, 10.1021/acs.macromol.6b01713.
Mrlík, M., Špírek, M., Al- Khori, J., Ahmad, A.A., Mosnaček, J., AlMaadeed, M.A., et al. Mussel-mimicking sulfobetaine-based copolymer with metal tunable gelation, self-healing and antibacterial capability. Arab J Chem, 2017, 10.1016/j.arabjc.2017.03.009.
Shao, H., Stewart, R.J., Biomimetic underwater adhesives with environmentally triggered setting mechanisms. Adv Mater 22 (2010), 729–733, 10.1002/adma.200902380.
Shao, H., Weerasekare, G.M., Stewart, R.J., Controlled curing of adhesive complex coacervates with reversible periodate carbohydrate complexes. J Biomed Mater Res Part A 97A (2011), 46–51, 10.1002/jbm.a.33026.
Ma, W., Xu, H., Takahara, A., Substrate-independent underwater superoleophobic surfaces inspired by fish-skin and mussel-adhesives. Adv Mater Interfaces 1 (2014), 1–5, 10.1002/admi.201300092.
Ko, J., Kim, Y.J., Kim, Y.S., Self-healing polymer dielectric for a high capacitance gate insulator. ACS Appl Mater Interfaces 8 (2016), 23854–23861, 10.1021/acsami.6b08220.
Higaki, Y., Takahara, A., Versatile anti-fouling surface design through nature-inspired approaches. Green Mater 5 (2017), 14–21, 10.1680/jgrma.16.00011.
Lee, H., Lee, B.P., Messersmith, P.B., A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448 (2007), 338–341, 10.1038/nature05968.
Glass, P., Chung, H., Washburn, N.R., Sitti, M., Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions. Langmuir 25 (2009), 6607–6612, 10.1021/la9009114.
Pechey, A., Elwood, C.N., Wignall, G.R., Dalsin, J.L., Lee, B.P., Vanjecek, M., et al. Anti-adhesive coating and clearance of device associated uropathogenic escherichia coli cystitis. J Urol 182 (2009), 1628–1636, 10.1016/j.juro.2009.06.008.
Vasilaki, E., Kaliva, M., Katsarakis, N., Vamvakaki, M., Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO2. Appl Surf Sci 399 (2017), 106–113, 10.1016/j.apsusc.2016.12.064.
Yabu, H., Ohshima, H., Saito, Y., Double-phase- functionalized magnetic janus polymer microparticles containing TiO2 and Fe2O3 nanoparticles encapsulated in mussel-inspired amphiphilic polymers. ACS Appl Mater Interfaces 6 (2014), 18122–18128, 10.1021/am506530s.
Choi, Y.S., Kang, H., Kim, D.G., Cha, S.H., Lee, J.C., Mussel-inspired dopamine- and plant-based cardanol-containing polymer coatings for multifunctional filtration membranes. ACS Appl Mater Interfaces 6 (2014), 21297–21307, 10.1021/am506263s.
Han, H., Wu, J., Avery, C.W., Mizutani, M., Jiang, X., Kamigaito, M., et al. Immobilization of amphiphilic polycations by catechol functionality for antimicrobial coatings. Langmuir 27 (2011), 4010–4019, 10.1021/la1046904.
Zhang, F., Liu, S., Zhang, Y., Wei, Y., Xu, J., Underwater bonding strength of marine mussel- inspired polymers containing DOPA-like units with amino groups. RSC Adv 2 (2012), 8919–8921, 10.1039/c2ra21312e.
Jo, S.H., Sohn, J.S., Biomimetic adhesive materials containing cyanoacryl group for medical application. Molecules 19 (2014), 16779–16793, 10.3390/molecules191016779.
Meredith, H.J., Wilker, J.J., The interplay of modulus, strength, and ductility in adhesive design using biomimetic polymer chemistry. Adv Funct Mater 25 (2015), 5057–5065, 10.1002/adfm.201501880.
Marcelo, G., Kaplan, E., Tarazona, M.P., Mendicuti, F., Interaction of gold nanoparticles with Doxorubicin mediated by supramolecular chemistry. Colloids Surf B Biointerfaces 128 (2015), 237–344, 10.1016/j.colsurfb.2015.01.041.
Saito, Y., Kawano, T., Shimomura, M., Yabu, H., Fabrication of mussel-inspired highly adhesive honeycomb films containing catechol groups and their applications for substrate-independent porous templates. Macromol Rapid Commun 34 (2013), 630–634, 10.1002/marc.201200839.
Saito, Y., Shimomura, M., Yabu, H., Breath figures of nanoscale bricks: a universal method for creating hierarchic porous materials from inorganic nanoparticles stabilized with mussel- inspired copolymers. Macromol Rapid Commun 35 (2014), 1763–1769, 10.1002/marc.201400363.
Yamamoto, S., Uchiyama, S., Miyashita, T., Mitsuishi, M., Multimodal underwater adsorption of oxide nanoparticles on catechol-based polymer nanosheets. Nanoscale 8 (2016), 5912–5919, 10.1039/C5NR08739B.
Payra, D., Naito, M., Fujii, Y., Yamada, N.L., Hiromoto, S., Singh, A., Bioinspired adhesive polymer coatings for efficient and versatile corrosion resistance. RSC Adv 5 (2015), 15977–15984, 10.1039/c4ra17196a.
Payra, D., Fujii, Y., Das, S., Takaishi, J., Naito, M., Rational design of a biomimetic glue with tunable strength and ductility. Polym Chem 8 (2017), 1654–1663, 10.1039/C6PY02232D.
Zhong, J., Ji, H., Duan, J., Tu, H., Zhang, A., Coating morphology and surface composition of acrylic terpolymers with pendant catechol, OEG and perfluoroalkyl groups in varying ratio and the effect on protein adsorption. Colloids Surf B Biointerfaces 140 (2016), 254–261, 10.1016/j.colsurfb.2015.12.051.
Sun, Q., Li, H., Xian, C., Yang, Y., Song, Y., Cong, P., Mimetic marine antifouling films based on fluorine-containing polymethacrylates. Appl Surf Sci 344 (2015), 17–26, 10.1016/j.apsusc.2015.03.101.
Li, J., Ejima, H., Yoshie, N., Seawater-assisted self-healing of catechol polymers via hydrogen bonding and coordination interactions. ACS Appl Mater Interfaces 8 (2016), 19047–19053, 10.1021/acsami.6b04075.
Kim, C., Ejima, H., Yoshie, N., Non-swellable self- healing polymer with long-term stability under seawater. RSC Adv 7 (2017), 19288–19295, 10.1039/C7RA01778B.
Lin, X., Ma, W., Wu, H., Cao, S., Huang, L., Chen, L., et al. Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chem Commun 52 (2016), 1895–1898, 10.1039/C5CC08842A.
Harper, T., Slegeris, R., Pramudya, I., Chung, H., Single-phase photo-cross-linkable bioinspired adhesive for precise control of adhesion strength. ACS Appl Mater Interfaces 9 (2017), 1830–1839, 10.1021/acsami.6b14599.
Pramudya, I., Rico, C.G., Lee, C., Chung, H., POSS-containing bioinspired adhesives with enhanced mechanical and optical properties for biomedical applications. Biomacromolecules 17 (2016), 3853–3861, 10.1021/acs.biomac.6b00805.
Puertas-Bartolomé, M., Fernández-Gutiérrez, M., García-Fernández, L., Vázquez-Lasa, B., San Román, J., Biocompatible and bioadhesive low molecular weight polymers containing long-arm catechol- functionalized methacrylate. Eur Polym J 98 (2018), 47–55, 10.1016/j.eurpolymj.2017.11.011.
Wang, X., Ye, Q., Gao, T., Liu, J., Zhou, F., Self-assembly of catecholic macroinitiator on various substrates and surface-initiated polymerization. Langmuir 28 (2012), 2574–2581, 10.1021/la204568d.
Wei, Q., Wang, X., Zhou, F., A versatile macro-initiator with dual functional anchoring groups for surface-initiated atom transfer radical polymerization on various substrates. Polym Chem 3 (2012), 2129–2137, 10.1039/c2py20148h.
Zeng, Z., Wang, H., Morsi, Y., Mo, X., Synthesis and characterization of incorporating mussel mimetic moieties into photoactive hydrogel adhesive. Colloids Surf B Biointerfaces 161 (2018), 94–102, 10.1016/j.colsurfb.2017.10.041.
Xue, J., Wang, T., Nie, J., Yang, D., Preparation and characterization of a bioadhesive with poly (vinyl alcohol) crosslinking agent. J Appl Polym Sci 127 (2013), 5051–5058, 10.1002/app.38115.
Skelton, S., Bostwick, M., O'Connor, K., Konst, S., Casey, S., Lee, B.P., Biomimetic adhesive containing nanocomposite hydrogel with enhanced materials properties. Soft Matter 9 (2013), 3825–3833, 10.1039/c3sm27352k.
Lee, B.P., Konst, S., Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv Mater 26 (2014), 3415–3419, 10.1002/adma.201306137.
Lee, B.P., Lin, M.-H., Narkar, A., Konst, S., Wilharm, R., Modulating the movement of hydrogel actuator based on catechol–iron ion coordination chemistry. Sensors Actuators B Chem 206 (2015), 456–462, 10.1016/j.snb.2014.09.089.
Lee, B.P., Narkar, A., Wilharm, R., Effect of metal ion type on the movement of hydrogel actuator based on catechol-metal ion coordination chemistry. Sensors Actuators B Chem 227 (2016), 248–454, 10.1016/j.snb.2015.12.038.
Kim, Y.-J., Tachibana, M., Umezu, M., Matsunaga, Y.T., Bio-inspired smart hydrogel with temperature-dependent properties and enhanced cell attachment. J Mater Chem B 4 (2016), 1740–1746, 10.1039/C5TB02735G.
Marcisz, K., Romanski, J., Stojek, Z., Karbarz, M., Environmentally sensitive hydrogel functionalized with electroactive and complexing-iron(III) catechol groups. J Polym Sci Part A Polym Chem 55 (2017), 3236–3242, 10.1002/pola.28697.
Liao, J., Huang, J., Wang, T., Sun, W., Tong, Z., Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese J Polym Sci 35 (2017), 1297–1306, 10.1007/s10118-017-1991-9.
Liu, Y., Lee, B.P., Recovery property of double-network hydrogel containing a mussel-inspired adhesive moiety and nano-silicate. J Mater Chem B 4 (2016), 6534–6540, 10.1039/C6TB01828A.
Narkar, A.R., Barker, B., Clisch, M., Jiang, J., Lee, B.P., pH responsive and oxidation resistant wet adhesive based on reversible catechol-boronate complexation. Chem Mater 28 (2016), 5432–5439, 10.1021/acs.chemmater.6b01851.
Narkar, A.R., Kelley, J.D., Pinnaratip, R., Lee, B.P., Effect of ionic functional groups on the oxidation state and interfacial binding property of catechol-based adhesive. Biomacromolecules, 2017, 10.1021/acs.biomac.7b01311.
Nakahata, M., Mori, S., Takashima, Y., Hashidzume, A., Yamaguchi, H., Harada, A., pH- and sugar-responsive gel assemblies based on boronate-catechol Interactions. ACS Macro Lett 3 (2014), 337–340, 10.1021/mz500035w.
Zhang, Y., Zhang, J., Chen, M., Gong, H., Thamphiwatana, S., Eckmann, L., et al. A bioadhesive nanoparticle–hydrogel hybrid system for localized antimicrobial drug delivery. ACS Appl Mater Interfaces 8 (2016), 18367–18374, 10.1021/acsami.6b04858.
Wu, H., Sariola, V., Zhu, C., Zhao, J., Sitti, M., Bettinger, C.J., Transfer printing of metallic microstructures on adhesion-promoting hydrogel substrates. Adv Mater 27 (2015), 3398–3404, 10.1002/adma.201500954.
Wu, H., Sariola, V., Zhao, J., Ding, H., Sitti, M., Bettinger, C.J., Composition-dependent underwater adhesion of catechol-bearing hydrogels. Polym Int 65 (2016), 1355–1359, 10.1002/pi.5246.
Glass, P., Chung, H., Washburn, N.R., Sitti, M., Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p(DMA-co-MEA) tip coating. Langmuir 26 (2010), 17357–17362, 10.1021/la1029245.
Chung, H., Glass, P., Pothen, J.M., Sitti, M., Washburn, N.R., Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning. Biomacromolecules 12 (2011), 342–347, 10.1021/bm101076e.
Wei, W., Zhu, M., Shen, X., Wu, S., Li, S., Switchable polymer reactor composed of mussel-inspired polymer that contains Au nanoparticles. RSC Adv 6 (2016), 42869–42875, 10.1039/C6RA04232E.
Ai, Y., Nie, J., Wu, G., Yang, D., The DOPA-functionalized bioadhesive with properties of photocrosslinked and thermoresponsive. J Appl Polym Sci 131 (2014), 1–10, 10.1002/app.41102 41102.
Álvarez-Paino, M., Marcelo, G., Muñoz- Bonilla, A., Fernández-García, M., Catecholic chemistry to obtain recyclable and reusable hybrid polymeric particles as catalytic systems. Macromolecules 46 (2013), 2951–2962, 10.1021/ma4003566.
Shang, L., Wang, Q., Chen, K., Qu, J., Lin, J., Luo, J., et al. Preparation of polydopamine based redox-sensitive magnetic nanoparticles for doxorubicin delivery and MRI detection. J Bioresour Bioprod 2 (2017), 67–72, 10.21967/jbb.v2i2.135.
Shang, L., Wang, Q., Chen, K., Qu, J., Zhou, Q., Luo, J., et al. SPIONs/DOX loaded polymer nanoparticles for MRI detection and efficient cell targeting drug delivery. RSC Adv 7 (2017), 47715–47725, 10.1039/C7RA08348C.
Kim, M., Chung, H., Photo-responsive bio-inspired adhesives: facile control of adhesion strength via a photocleavable crosslinker. Polym Chem 8 (2017), 6300–6308, 10.1039/C7PY01535F.
Seo, S., Lee, D.W., Ahn, J.S., Cunha, K., Filippidi, E., Ju, S.W., et al. Significant performance enhancement of polymer resins by bioinspired dynamic bonding. Adv Mater 29 (2017), 1–9, 10.1002/adma.201703026 1703026.
Muñoz-Bonilla, A., Marcelo, G., Casado, C., Teran, F.J., Fernández-García, M., Preparation of glycopolymer-coated magnetite nanoparticles for hyperthermia treatment. J Polym Sci Part A Polym Chem 50 (2012), 5087–5096, 10.1002/pola.26367.
Du, J., Liu, X., Liu, W., Wu, Z., Chen, H., One-step preparation of vinyl-functionalized material surfaces: a versatile platform for surface modification. Sci China Chem 57 (2014), 654–660, 10.1007/s11426- 014-5067-1.
Xue, J., Wang, T., Nie, J., Yang, D., Preparation and characterization of a photocrosslinkable bioadhesive inspired by marine mussel. J Photochem Photobiol B Biol 119 (2013), 31–36, 10.1016/j.jphotobiol.2012.12.001.
Jiang, J., Wan, W., Ge, L., Bu, S., Zhong, W., Xing, M., Mussel-inspired nanofibrous sheet for suture-less stomach incision surgery. Chem Commun 51 (2015), 8695–8698, 10.1039/C5CC01898F.
Jiang, J., Huang, Y., Wang, Y., Xu, H., Xing, M., Zhong Mussel-Inspired Dopamine and, W., Carbon nanotube leading to a biocompatible self-rolling conductive hydrogel film. Materials (Basel) 10:964 (2017), 1–14, 10.3390/ma10080964.
Zhao, P., Wei, K., Feng, Q., Chen, H., Wong, D.S.H., Chen, X., et al. Mussel-mimetic hydrogels with defined cross-linkers achieved via controlled catechol dimerization exhibiting tough adhesion for wet biological tissues. Chem Commun 53 (2017), 12000–12003, 10.1039/C7CC07215E.
Mauchauffé, R., Moreno- Couranjou, M., Boscher, N.D., Duwez, A.-S., Choquet, P., Liquid-assisted plasma-enhanced chemical vapor deposition of catechol and quinone-functionalized coatings: insights into the surface chemistry and morphology. Plasma Process Polym 13 (2016), 843–856, 10.1002/ppap.201600002.
Mauchauffé, R., Bonot, S., Moreno- Couranjou, M., Detrembleur, C., Boscher, N.D., Van De Weerdt, C., et al. Fast atmospheric plasma deposition of bio-Inspired catechol/quinone-rich nanolayers to immobilize NDM-1 enzymes for water treatment. Adv Mater Interfaces 3 (2016), 1–6, 10.1002/admi.201500520.
Xue, X., Pasparakis, G., Halliday, N., Winzer, K., Howdle, S.M., Cramphorn, C.J., et al. Synthetic polymers for simultaneous bacterial sequestration and quorum sense interference. Angew Chem Int Ed 50 (2011), 9852–9856, 10.1002/anie.201103130.
Louzao, I., Sui, C., Winzer, K., Fernandez-Trillo, F., Alexander, C., Cationic polymer mediated bacterial clustering: cell-adhesive properties of homo- and copolymers. Eur J Pharm Biopharm 95 (2015), 47–62, 10.1016/j.ejpb.2015.05.026.
Ghavaminejad, A., Sasikala, A.R.K., Unnithan, A.R., Thomas, R.G., Jeong, Y.Y., Vatankhah- Varnoosfaderani, M., et al. Mussel-inspired electrospun smart magnetic nanofibers for hyperthermic chemotherapy. Adv Funct Mater 25 (2015), 2867–2875, 10.1002/adfm.201500389.
Zhang, H., Zhao, T., Newland, B., Duffy, P., Annaidh, A.N., O'Cearbhaill, E.D., et al. On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG–catechol copolymers. J Mater Chem B 3 (2015), 6420–6428, 10.1039/C5TB00949A.
Breydo, L., Newland, B., Zhang, H., Rosser, A., Werner, C., Uversky, V.N., et al. A hyperbranched dopamine-containing PEG-based polymer for the inhibition of α-synuclein fibrillation. Biochem Biophys Res Commun 469 (2016), 830–835, 10.1016/j.bbrc.2015.12.060.
Xu, B., Sun, X., Wu, C., Hu, J., Huang, X., Construction of catechol-containing semi- fluorinated asymmetric polymer brush via successive RAFT polymerization and ATRP. Polym Chem 8 (2017), 7499–7506, 10.1039/C7PY01794D.
Wang, J., Zhu, H., Chen, G., Hu, Z., Weng, Y., Wang, X., et al. Controlled synthesis and self-assembly of dopamine-containing copolymer for honeycomb-like porous hybrid particles. Macromol Rapid Commun 35 (2014), 1061–1067, 10.1002/marc.201400029.
Chen, K., Bao, M., Muñoz Bonilla, A., Zhang, W., Chen, G., A biomimicking and electrostatic self-assembly strategy for the preparation of glycopolymer decorated photoactive nanoparticles. Polym Chem 7 (2016), 2565–2572, 10.1039/C6PY00129G.
Peng, L., Li, Z., Li, X., Xue, H., Zhang, W., Chen, G., Integrating sugar and dopamine into one polymer: controlled synthesis and robust surface modification. Macromol Rapid Commun 38 (2017), 1–7, 10.1002/marc.201600548 1600548.
Charlot, A., Sciannaméa, V., Lenoir, S., Faure, E., Jérôme, R., Jérôme, C., et al. All-in-one strategy for the fabrication of antimicrobial biomimetic films on stainless steel. J Mater Chem 19 (2009), 4117–4125, 10.1039/b820832h.
Yang, J., Keijsers, J., van Heek, M., Stuiver, A., Cohen Stuart, M., Kamperman, M., The effect of molecular composition and crosslinking on adhesion of a bio-inspired adhesive. Polym Chem 6 (2015), 3121–3130, 10.1039/C4PY01790K.
Thavasi, V., Bettens, R.P.A., Leong Temperature and, L.P., Solvent effects on radical scavenging ability of phenols. J Phys Chem A 113 (2009), 3068–3077, 10.1021/jp806679v.
Moad, G., Solomon, D.H., The Chemistry of Radical Polymerization. second fully revised edition, 2006, Elsevier, 271–273.
Xue, J., Zhang, Z., Nie, J., Du, B., Formation of microgels by utilizing the reactivity of catechols with radicals. Macromolecules 50 (2017), 5285–5292, 10.1021/acs.macromol.7b01304.
Marcelo, G., López- González, M., Trabado, I., Rodrigo, M.M., Valiente, M., Mendicuti, F., Lignin inspired PEG hydrogels for drug delivery. Mater Today Commun 7 (2016), 73–80, 10.1016/j.mtcomm.2016.04.004.
Zhang, C., Li, K., Simonsen, J., A novel wood- binding domain of a wood-plastic coupling agent: development and characterization. J Appl Polym Sci 89 (2003), 1078–1087, 10.1002/app.12257.
Yang, J., Bos, I., Pranger, W., Stuiver, A., Velders, A.H., Cohen Stuart, M.A., et al. A clear coat from a water soluble precursor: a bioinspired paint concept. J Mater Chem A 4 (2016), 6868–6877, 10.1039/C5TA09437B.
Ghavaminejad, A., Park, C.H., Kim, C.S., In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules 17 (2016), 1213–1223, 10.1021/acs.biomac.6b00039.
Nishida, J., Kobayashi, M., Takahara, A., Gelation and adhesion behavior of mussel adhesive protein mimetic polymer. J Polym Sci Part A Polym Chem 51 (2013), 1058–1065, 10.1002/pola.26487.
Ma, W., Higaki, Y., Takahara, A., Superamphiphobic coatings from combination of a biomimetic catechol-bearing fluoropolymer and halloysite nanotubes. Adv Mater Interfaces 4 (2017), 1–9, 10.1002/admi.201700907 1700907.
Xu, H., Nishida, J., Ma, W., Wu, H., Kobayashi, M., Otsuka, H., et al. Competition between oxidation and coordination in cross-linking of polystyrene copolymer containing catechol groups. ACS Macro Lett 1 (2012), 457–460, 10.1021/mz200217d.
Xu, H., Nishida, J., Wu, H., Higaki, Y., Otsuka, H., Ohta, N., et al. Structural effects of catechol-containing polystyrene gels based on a dual cross-linking approach. Soft Matter 9 (2013), 1967–1974, 10.1039/C2SM26994E.
Bartucci, M.A., Napadensky, E., Lenhart, J.L., Orlicki, J.A., Side chain length impacting thermal transitions and water uptake of acrylate–maleimide copolymers with pendent catechols. RSC Adv 7 (2017), 49114–49118, 10.1039/C7RA08769A.
Ahn, B.K., Lee, D.W., Israelachvili, J.N., Waite, J.H., Surface-initiated self-healing of polymers in aqueous media. Nat Mater 13 (2014), 867–872, 10.1038/nmat4037.
Seo, S., Das, S., Zalicki, P.J., Mirshafian, R., Eisenbach, C.D., Israelachvili, J.N., et al. Microphase behavior and enhanced wet-cohesion of synthetic copolyampholytes inspired by a mussel foot protein. J Am Chem Soc 137 (2015), 9214–9217, 10.1021/jacs.5b03827.
Zhao, Q., Lee, D.W., Ahn, B.K., Seo, S., Kaufman, Y., Israelachvili, J.N., et al. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat Mater 15 (2016), 407–412, 10.1038/nmat4539.
Lee, S.-B., González- Cabezas, C., Kim, K.-M., Kim, K.-N., Kuroda, K., Catechol-functionalized synthetic polymer as a dental adhesive to contaminated dentin surface for a composite restoration. Biomacromolecules 16 (2015), 2265–2275, 10.1021/acs.biomac.5b00451.
Mu, Y., Wu, X., Pei, D., Wu, Z., Zhang, C., Zhou, D., et al. Contribution of the polarity of mussel-inspired adhesives in the realization of strong underwater bonding. ACS Biomater Sci Eng 3 (2017), 3133–3314, 10.1021/acsbiomaterials.7b00673.
Bernard, J., Branger, C., Beurroies, I., Denoyel, R., Blanc, S., Margaillan, A., Synthesis of a poly(vinylcatechol-co-divinylbenzene) resin and accessibility to catechol units. Polymer (Guildf) 51 (2010), 2472–2478, 10.1016/j.polymer.2010.04.027.
Yabu, H., Nagano, S., Formation of unusual microphase-separated ultrathin films of poly(vinyl catechol-block-styrene) (PVCa-b-PSt) at the air–water interface by solution casting onto water. RSC Adv 7 (2017), 33086–33090, 10.1039/C7RA06574D.
Gill, S.K., Roohpour, N., Topham, P.D., Tighe, B.J., Tunable denture adhesives using biomimetic principles for enhanced tissue adhesion in moist environments. Acta Biomater 63 (2017), 326–335, 10.1016/j.actbio.2017.09.004.
Zhan, K., Kim, C., Sung, K., Ejima, H., Yoshie, N., Tunicate-Inspired gallol polymers for underwater adhesive: a comparative study of catechol and gallol. Biomacromolecules 18 (2017), 2959–2966, 10.1021/acs.biomac.7b00921.
White, J.D., Wilker, J.J., Underwater bonding with charged polymer mimics of marine mussel adhesive proteins. Macromolecules 44 (2011), 5085–5088, 10.1021/ma201044x.
Isakova, A., Topham, P.D., Sutherland, A.J., Controlled RAFT polymerization and zinc binding performance of catechol-inspired homopolymers. Macromolecules 47 (2014), 2561–2568, 10.1021/ma500336u.
Isakova, A., Burton, C., Nowakowski, D.J., Topham, P.D., Diels–Alder cycloaddition and RAFT chain end functionality: an elegant route to fullerene end-capped polymers with control over molecular mass and architecture. Polym Chem 8 (2017), 2796–2805, 10.1039/C7PY00394C.
Zhan, K., Ejima, H., Yoshie, N., Antioxidant and adsorption properties of bioinspired phenolic polymers: a comparative study of catechol and gallol. ACS Sustain Chem Eng 4 (2016), 3857–3863, 10.1021/acssuschemeng.6b00626.
Patil, N., Aqil, A., Ouhib, F., Admassie, S., Inganäs, O., Jérôme, C., et al. Bioinspired redox-active catechol-bearing polymers as ultrarobust organic cathodes for lithium storage. Adv Mater 29 (2017), 1–9, 10.1002/adma.201703373 1703373.
Takeshima, H., Satoh, K., Kamigaito, M., Bio-based functional styrene monomers derived from naturally occurring ferulic acid for poly(vinylcatechol) and poly(vinylguaiacol) via controlled radical polymerization. Macromolecules 50 (2017), 4206–4216, 10.1021/acs.macromol.7b00970.
Saito, Y., Yabu, H., Synthesis of poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT process and preparation of organic-solvent-dispersive Ag NPs by automatic reduction of metal ions in the presence of PDHSt- b-PSt. Chem Commun 51 (2015), 3743–3746, 10.1039/C4CC08366K.
Saito, Y., Higuchi, T., Jinnai, H., Hara, M., Nagano, S., Matsuo, Y., et al. Silver nanoparticle arrays prepared by In situ automatic reduction of silver ions in mussel-inspired block copolymer films. Macromol Chem Phys 217 (2016), 726–734, 10.1002/macp.201500504.
Yabu, H., Matsui, J., Hara, M., Nagano, S., Matsuo, Y., Nagao, Y., Proton conductivities of lamellae-forming bioinspired block copolymer thin films containing silver nanoparticles. Langmuir 32 (2016), 9484–9491, 10.1021/acs.langmuir.6b02521.
Patil, N., Cordella, D., Aqil, A., Debuigne, A., Admassie, S., Jérôme, C., et al. Surface- and redox-active multifunctional polyphenol-derived poly (ionic liquid)s: controlled synthesis and characterization. Macromolecules 49 (2016), 7676–7691, 10.1021/acs.macromol.6b01857.
Manolakis, I., Noordover, B.a.J., Vendamme, R., Eevers, W., Novel L-DOPA-derived poly(ester amide)s: monomers, polymers, and the first L-DOPA-functionalized biobased adhesive tape. Macromol Rapid Commun 35 (2014), 71–76, 10.1002/marc.201300750.
Xu, Y., Liu, Q., Narayanan, A., Jain, D., Dhinojwala, A., Joy, A., Mussel-inspired polyesters with aliphatic pendant groups demonstrate the importance of hydrophobicity in underwater adhesion. Adv Mater Interfaces 00 (2017), 1–6, 10.1002/admi.201700506 1700506.
Wang, Y.-Z., Li, L., Du F-S, Li Z-C., A facile approach to catechol containing UV dismantlable adhesives. Polymer (Guildf) 68 (2015), 270–278, 10.1016/j.polymer.2015.05.032.
Xu, L.Q., Pranantyo, D., Neoh, K.-G., Kang, E.-T., SL-M, Teo, Fu, G.D., Synthesis of catechol and zwitterion-bifunctionalized poly(ethylene glycol) for the construction of antifouling surfaces. Polym Chem 7 (2016), 493–501, 10.1039/C5PY01234A.
Peng, B., Lai, X., Chen, L., Lin, X., Sun, C., Liu, L., et al. Scarless wound closure by a mussel-inspired poly(amidoamine) tissue adhesive with tunable degradability. ACS Omega 2 (2017), 6053–6062, 10.1021/acsomega.7b01221.
Sun, P., Wang, J., Yao, X., Peng, Y., Tu, X., Du, P., et al. Facile preparation of mussel-inspired polyurethane hydrogel and its rapid curing behavior. ACS Appl Mater Interfaces 6 (2014), 12495–12504, 10.1021/am502106e.
Sakaguchi, T., Tsuzuki, T., Masuda, T., Hashimoto, T., Synthesis, gas permeability, and metal-induced gelation of poly(disubstituted acetylene)s having p, m-dimethoxyphenyl and p, m-dihydroxyphenyl groups. Polymer (Guildf) 55 (2014), 1977–1983, 10.1016/j.polymer.2014.03.007.
Li, L., Li, Y., Luo, X., Deng, J., Yang, W., Helical poly(N-propargylamide)s with functional catechol groups: synthesis and adsorption of metal ions in aqueous solution. React Funct Polym 70 (2010), 938–943, 10.1016/j.reactfunctpolym.2010.09.006.
Becker, G., Ackermann, L.-M., Schechtel, E., Klapper, M., Tremel, W., Wurm, F.R., Joining two natural motifs: catechol-containing poly(phosphoester)s. Biomacromolecules 18 (2017), 767–777, 10.1021/acs.biomac.6b01613.
Slegeris, R., Ondrusek, B.A., Chung, H., Catechol- and ketone-containing multifunctional bottlebrush polymers for oxime ligation and hydrogel formation. Polym Chem 8 (2017), 4707–4715, 10.1039/C7PY01112A.
Jenkins, C.L., Siebert, H.M., Wilker, J.J., Integrating mussel chemistry into a bio-based polymer to create degradable adhesives. Macromolecules 50 (2017), 561–568, 10.1021/acs.macromol.6b02213.
Matos-Pérez, C.R., White, J.D., Wilker, J.J., Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J Am Chem Soc 134 (2012), 9498–9505, 10.1021/ja303369p.
Jenkins, C.L., Meredith, H.J., Wilker, J.J., Molecular weight effects upon the adhesive bonding of a mussel mimetic polymer. ACS Appl Mater Interfaces 5 (2013), 5091–5096, 10.1021/am4009538.
Neto, A.I., Meredith, H.J., Jenkins, C.L., Wilker, J.J., Mano, J.F., Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Adv 3 (2013), 9352–9356, 10.1039/c3ra40715b.
Meredith, H.J., Jenkins, C.L., Wilker, J.J., Enhancing the adhesion of a biomimetic polymer yields performance rivaling commercial glues. Adv Funct Mater 24 (2014), 3259–3267, 10.1002/adfm.201303536.
Brennan, M.J., Meredith, H.J., Jenkins, C.L., Wilker, J.J., Liu, J.C., Cytocompatibility studies of a biomimetic copolymer with simplified structure and high-strength adhesion. J Biomed Mater Res Part A 104 (2016), 983–990, 10.1002/jbm.a.35633.
North, M.A., Del Grosso, C.A., Wilker, J.J., High strength underwater bonding with polymer mimics of mussel adhesive proteins. ACS Appl Mater Interfaces 9 (2017), 7866–7872, 10.1021/acsami.7b00270.
Leibig, D., Müller, A.H.E., Frey, H., Anionic polymerization of vinylcatechol derivatives: reversal of the monomer gradient directed by the position of the catechol moiety in the copolymerization with styrene. Macromolecules 49 (2016), 4792–4801, 10.1021/acs.macromol.6b00831.
Leibig, D., Lange, A.-K., Birke, A., Frey, H., Capitalizing on protecting groups to influence vinyl catechol monomer reactivity and monomer gradient in carbanionic copolymerization. Macromol Chem Phys 218 (2017), 1–11, 10.1002/macp.201600553 1600553.
Klöckner, B., Niederer, K., Fokina, A., Frey, H., Zentel, R., Conducting polymer with orthogonal catechol and disulfide anchor groups for the assembly of inorganic nanostructures. Macromolecules 50 (2017), 3779–3788, 10.1021/acs.macromol.7b00217.
Niederer, K., Schüll, C., Leibig, D., Johann, T., Frey, H., Catechol acetonide glycidyl ether (CAGE): a functional epoxide monomer for linear and hyperbranched multi-catechol functional polyether architectures. Macromolecules 49 (2016), 1655–1665, 10.1021/acs.macromol.5b02441.
Zhang, X., Huang, Q., Deng, F., Huang, H., Wan, Q., Liu, M., et al. Mussel-inspired fabrication of functional materials and their environmental applications: progress and prospects. Appl Mater Today 7 (2017), 222–238, 10.1016/j.apmt.2017.04.001.
Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R., Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18 (2006), 1345–1360, 10.1002/adma.200501612.
Cui, J., Iturri, J., Paez, J., Shafiq, Z., Serrano, C., D'Ischia, M., et al. Dopamine-based coatings and hydrogels toward substitution-related structure-property relationships. Macromol Chem Phys 215 (2014), 2403–2413, 10.1002/macp.201400366.
Cencer, M., Murley, M., Liu, Y., Lee, B.P., Effect of nitro-functionalization on the cross-linking and bioadhesion of biomimetic adhesive moiety. Biomacromolecules 16 (2015), 404–410, 10.1021/bm5016333.
Shafiq, Z., Cui, J., Pastor-Pérez, L., San Miguel, V., Gropeanu, R.A., Serrano, C., et al. Bioinspired underwater bonding and debonding on demand. Angew Chem Int Ed 51 (2012), 4332–4335, 10.1002/anie.201108629.
Wilker, J.J., Self-healing polymers: sticky when wet. Nat Mater 13 (2014), 849–850, 10.1038/nmat4070.
Falentin-Daudré, C., Faure, E., Svaldo- Lanero, T., Farina, F., Jérôme, C., Van De Weerdt, C., et al. Antibacterial polyelectrolyte micelles for coating stainless steel. Langmuir 28 (2012), 7233–7241, 10.1021/la3003965.
Faure, E., Lecomte, P., Lenoir, S., Vreuls, C., Van De Weerdt, C., Archambeau, C., et al. Sustainable and bio-inspired chemistry for robust antibacterial activity of stainless steel. J Mater Chem 21 (2011), 7901–7904, 10.1039/c1jm11380a.
Faure, E., Falentin- Daudré, C., Lanero, T.S., Vreuls, C., Zocchi, G., Van De Weerdt, C., et al. Functional nanogels as platforms for imparting antibacterial, antibiofilm, and antiadhesion activities to stainless steel. Adv Funct Mater 22 (2012), 5271–5282, 10.1002/adfm.201201106.
Faure, E., Halusiak, E., Farina, F., Giamblanco, N., Motte, C., Poelman, M., et al. Clay and DOPA containing polyelectrolyte multilayer film for imparting anticorrosion properties to galvanized steel. Langmuir 28 (2012), 2971–2978, 10.1021/la204385f.
Faure, E., Vreuls, C., Falentin-Daudré, C., Zocchi, G., Van de Weerdt, C., Martial, J., et al. A green and bio-inspired process to afford durable anti-biofilm properties to stainless steel. Biofouling 28 (2012), 719–728, 10.1080/08927014.2012.704366.
Vreuls, C., Zocchi, G., Vandegaart, H., Faure, E., Detrembleur, C., Duwez, A.-S., et al. Biomolecule-based antibacterial coating on a stainless steel surface: multilayer film build-up optimization and stability study. Biofouling 28 (2012), 395–404, 10.1080/08927014.2012.681304.
Ramanathan, M., Tseng, Y.-C., Ariga, K., Darling, S.B., Emerging trends in metal-containing block copolymers: synthesis, self-assembly, and nanomanufacturing applications. J Mater Chem C 1 (2013), 2080–2091, 10.1039/c3tc00930k.
Shin, D.O., Mun, J.H., Hwang, G.-T., Yoon, J.M., Kim, J.Y., Yun, J.M., et al. Multicomponent nanopatterns by directed block copolymer self-assembly. ACS Nano 7 (2013), 8899–8907, 10.1021/nn403379k.
Banerjee, I., Pangule, R.C., Kane, R.S., Antifouling coatings recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23 (2011), 690–718, 10.1002/adma.201001215.
Xu, L.Q., Pranantyo, D., Ng, Y.X., SL-M, Teo, Neoh, K.-G., Kang, E.-T., et al. Antifouling coatings of catecholamine copolymers on stainless steel. Ind Eng Chem Res 54 (2015), 5959–5967, 10.1021/acs.iecr.5b00171.
Meng, H., Li, Y., Faust, M., Konst, S., Lee, B.P., Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety. Acta Biomater 17 (2015), 160–169, 10.1016/j.actbio.2015.02.002.
Tarascon, J.-M., Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 414 (2001), 359–367, 10.1038/35104644.
Armand, M., Tarascon, J.-M., Building better batteries. Nature 451 (2008), 652–657, 10.1038/451652a.
Dunn, B., Kamath, H., Tarascon, J.-M., Electrical energy storage for the grid: a battery of choices. Science 334 (2011), 928–935, 10.1126/science.1212741.
Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., et al. Electrochemical energy storage for green grid. Chem Rev 111 (2011), 3577–3613, 10.1021/cr100290v.
Van Noorden, R., The rechargeable revolution: a better battery. Nature 507 (2014), 26–28, 10.1038/507026a.
Larcher, D., Tarascon, J.-M., Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7 (2014), 19–29, 10.1038/nchem.2085.
Vlad, A., Singh, N., Galande, C., Ajayan, P.M., Design considerations for unconventional electrochemical energy storage architectures. Adv Energy Mater 5 (2015), 1–53, 10.1002/aenm.201402115 1402115.
Wang, H., Yang, Y., Guo, L., Nature-Inspired electrochemical energy-storage materials and devices. Adv Energy Mater 7 (2017), 1–18, 10.1002/aenm.201601709 1601709.
Grey, C.P., Tarascon, J.M., Sustainability and in situ monitoring in battery development. Nat Mater 16 (2016), 45–56, 10.1038/nmat4777.
Nitta, N., Wu, F., Lee, J.T., Yushin, G., Li-ion battery materials: present and future. Mater Today 18 (2015), 252–264, 10.1016/j.mattod.2014.10.040.
Zhang, K., Hu, Z., Tao, Z., Chen, J., Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction. Sci China Mater 57 (2014), 42–58, 10.1007/s40843-014-0006-0.
Chen, R., Luo, R., Huang, Y., Wu, F., Li, L., Advanced high energy density secondary batteries with multi-electron reaction materials. Adv Sci 3 (2016), 1–39, 10.1002/advs.201600051 1600051.
Liu, C., Neale, Z.G., Cao, G., Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19 (2016), 109–123, 10.1016/j.mattod.2015.10.009.
Liang, Y., Tao, Z., Chen, J., Organic electrode materials for rechargeable lithium batteries. Adv Energy Mater 2 (2012), 742–769, 10.1002/aenm.201100795.
Schon, T.B., McAllister, B.T., Li, P.-F., Seferos, D.S., The rise of organic electrode materials for energy storage. Chem Soc Rev 45 (2016), 6345–6404, 10.1039/C6CS00173D.
Miroshnikov, M., Divya, K.P., Babu, G., Meiyazhagan, A., Reddy Arava, L.M., Ajayan, P.M., et al. Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers. J Mater Chem A 4 (2016), 12370–12386, 10.1039/C6TA03166H.
Song, Z., Zhou, H., Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci 6 (2013), 2280–2301, 10.1039/c3ee40709h.
Casado, N., Hernández, G., Sardon, H., Mecerreyes, D., Current trends in redox polymers for energy and medicine. Prog Polym Sci 52 (2016), 107–135, 10.1016/j.progpolymsci.2015.08.003.
Shacklette, L.W., Maxfield, M., Gould, S., Wolf, J.F., Jow, T.R., Baughman, R.H., Secondary batteries with electroactive polymer electrodes. Synth Met 8 (1987), 611–618, 10.1016/0379-6779(87)90949-0.
Kiya, Y., Iwata, A., Sarukawa, T., Henderson, J.C., Abruña, H.D., Poly[dithio-2, 5-(1, 3, 4-thiadiazole)] (PDMcT)-poly(3, 4-ethylenedioxythiophene) (PEDOT) composite cathode for high- energy lithium/lithium-ion rechargeable batteries. J Power Sources 173 (2007), 522–530, 10.1016/j.jpowsour.2007.04.086.
Janoschka, T., Hager, M.D., Schubert, U.S., Powering up the future: radical polymers for battery applications. Adv Mater 24 (2012), 6397–6409, 10.1002/adma.201203119.
Song, Z., Qian, Y., Zhang, T., Otani, M., Zhou, H., Poly(benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries. Adv Sci 2 (2015), 1–9, 10.1002/advs.201500124 1500124.
Xu, F., Wang, H., Lin, J., Luo, X., Cao, S., Yang, H., Poly(anthraquinonyl imide) as a high capacity organic cathode material for Na-ion batteries. J Mater Chem A 4 (2016), 11491–11497, 10.1039/C6TA03956A.
Huskinson, B., Marshak, M.P., Suh, C., Er, S., Gerhardt, M.R., Galvin, C.J., et al. A metal-free organic–inorganic aqueous flow battery. Nature 505 (2014), 195–8198, 10.1038/nature12909.
Choi, W., Harada, D., Oyaizu, K., Nishide, H., Aqueous electrochemistry of poly (vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries. J Am Chem Soc 133 (2011), 19839–19843, 10.1021/ja206961t.
Deng, W., Liang, X., Wu, X., Qian, J., Cao, Y., Ai, X., et al. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci Rep 3 (2013), 1–6, 10.1038/srep02671 2671.
Nokami, T., Matsuo, T., Inatomi, Y., Hojo, N., Tsukagoshi, T., Yoshizawa, H., et al. Polymer- Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and – Discharge Lithium-Ion Batteries with High Capacity. J Am Chem Soc 134 (2012), 19694–19700, 10.1021/ja306663 g.
Liang, Y., Jing, Y., Gheytani, S., Lee, K.-Y., Liu, P., Facchetti, A., et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat Mater 16 (2017), 841–848, 10.1038/nmat4919.
Liu, T., Kim, K.C., Lee, B., Chen, Z., Noda, S., Jang, S.S., et al. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy Environ Sci 10 (2017), 205–215, 10.1039/C6EE02641A.
Wang, G., Zhang, L., Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41 (2012), 797–828, 10.1039/C1CS15060J.
Chen, G.Z., Supercapacitor and supercapattery as emerging electrochemical energy stores. Int Mater Rev 62 (2017), 173–202, 10.1080/09506608.2016.1240914.
Milczarek, G., Lignosulfonate-modified electrodes: electrochemical properties and electrocatalysis of NADH oxidation. Langmuir 25 (2009), 10345–10353, 10.1021/la9008575.
Kim, S.K., Kim, Y.K., Lee, H., Lee, S.B., Park, H.S., Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials. ChemSusChem 7 (2014), 1094–10101, 10.1002/cssc.201301061.
Ajjan, F.N., Casado, N., Rębiś, T., Elfwing, A., Solin, N., Mecerreyes, D., et al. High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors. J Mater Chem A 4 (2016), 1838–1847, 10.1039/C5TA10096H.
Navarro-Suárez, A.M., Casado, N., Carretero- González, J., Mecerreyes, D., Rojo, T., Full-cell quinone/hydroquinone supercapacitors based on partially reduced graphite oxide and lignin/PEDOT electrodes. J Mater Chem A 5 (2017), 7137–7143, 10.1039/C7TA00527J.
Kim, S.-K., Cho, J., Moore, J.S., Park, H.S., Braun, P.V., High-performance mesostructured organic hybrid pseudocapacitor electrodes. Adv Funct Mater 26 (2016), 903–910, 10.1002/adfm.201504307.
Benoit, C., Demeter, D., B?langer, D., Cougnon, C., A redox-active binder for electrochemical capacitor electrodes. Angew Chem Int Ed 55 (2016), 5318–5321, 10.1002/anie.201601395.
Lin, Q., Gourdon, D., Sun, C., Holten-Andersen, N., Anderson, T.H., Waite, J.H., et al. Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp- 3. Proc Natl Acad Sci 104 (2007), 3782–3786, 10.1073/pnas.0607852104.
Stewart, R.J., Ransom, T.C., Hlady, V., Natural underwater adhesives. J Polym Sci Part B Polym Phys 49 (2011), 757–771, 10.1002/polb.22256.
Maier, G.P., Rapp, M.V., Waite, J.H., Israelachvili, J.N., Butler, A., Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 349 (2015), 628–632, 10.1126/science.aab0556.
Ahn, B.K., Das, S., Linstadt, R., Kaufman, Y., Martinez-Rodriguez, N.R., Mirshafian, R., et al. High-performance mussel-inspired adhesives of reduced complexity. Nat Commun 6 (2015), 1–7, 10.1038/ncomms9663 8663.
Rapp, M.V., Maier, G.P., Dobbs, H.A., Higdon, N.J., Waite, J.H., Butler, A., et al. Defining the catechol–cation synergy for enhanced wet adhesion to mineral surfaces. J Am Chem Soc 138 (2016), 9013–9016, 10.1021/jacs.6b03453.
Das, S., Lee, B.H., Linstadt, R.T.H., Cunha, K., Li, Y., Kaufman, Y., et al. Molecularly smooth self-assembled monolayer for high-mobility organic field-effect transistors. Nano Lett 16 (2016), 6709–6715, 10.1021/acs.nanolett.6b03860.
Gebbie, M.A., Wei, W., Schrader, A.M., Cristiani, T.R., Dobbs, H.A., Idso, M., et al. Tuning underwater adhesion with cation-π interactions. Nat Chem 9 (2017), 473–479, 10.1038/nchem.2720.
Danner, E.W., Kan, Y., Hammer, M.U., Israelachvili, J.N., Waite, J.H., Adhesion of mussel foot protein Mefp-5 to Mica: an underwater superglue. Biochemistry 51 (2012), 6511–6518, 10.1021/bi3002538.
Nicklisch, S.C.T., Waite JH. Mini-review. The role of redox in Dopa-mediated marine adhesion. Biofouling 28 (2012), 865–877, 10.1080/08927014.2012.719023.
Yu, J., Wei, W., Danner, E., Ashley, R.K., Israelachvili, J.N., Waite, J.H., Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat Chem Biol 7 (2011), 588–590, 10.1038/nchembio.630.
Wei, W., Yu, J., Broomell, C., Israelachvili, J.N., Waite, J.H., Hydrophobic enhancement of dopa-mediated adhesion in a mussel foot protein. J Am Chem Soc 135 (2013), 377–383, 10.1021/ja309590f.
Yu, J., Wei, W., Danner, E., Israelachvili, J.N., Waite, J.H., Effects of interfacial redox in mussel adhesive protein films on mica. Adv Mater 23 (2011), 2362–2366, 10.1002/adma.201003580.
Menyo, M.S., Hawker, C.J., Waite, J.H., Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter 9 (2013), 0314–10323, 10.1039/c3sm51824 h.
Anderson, T.H., Yu, J., Estrada, A., Hammer, M.U., Waite, J.H., Israelachvili, J.N., The contribution of DOPA to substrate-peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Adv Funct Mater 20 (2010), 4196–4205, 10.1002/adfm.201000932.
Kan, Y., Danner, E.W., Israelachvili, J.N., Chen, Y., Waite, J.H., Boronate complex formation with dopa containing mussel adhesive protein retards pH-induced oxidation and enables adhesion to mica. PLoS One 9 (2014), 1–7, 10.1371/journal.pone.0108869 e108869.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.