Paper published in a book (Scientific congresses and symposiums)
##### Phase Identification of Smart Meters by Clustering Voltage Measurements
Olivier, Frédéric  ; Sutera, Antonio  ; Geurts, Pierre  et al.
2018 • In Proceedings of the XX Power Systems Computation Conference (PSCC 2018)
Peer reviewed

#### Files

##### Full Text
Olivier F. et al. - 2018 - Phase Identification of Smart Meters by Clustering Voltage Measurements.pdf
Publisher postprint (747.67 kB)
##### Annexes
PSCC Presentation - Frederic OLIVIER - Phase Identification of Smart Meters by Clustering Voltage Measurements.pdf
Publisher postprint (3.41 MB)

All documents in ORBi are protected by a user license.

#### Details

Keywords :
Voltage correlation; clustering; constrained k- means clustering; phase identification; smart meter; three-phase distribution network
Abstract :
[en] When a smart meter, be it single-phase or threephase, is connected to a three-phase network, the phase(s) to which it is connected is (are) initially not known. This means that each of its measurements is not uniquely associated with a phase of the distribution network. This phase information is important because it can be used by Distribution System Operators to take actions in order to have a network that is more balanced. In this work, the correlation between the voltage measurements of the smart meters is used to identify the phases. To do so, the constrained k-means clustering method is first introduced as a reference, as it has been previously used for phase identification. A novel, automatic and effective method is then proposed to overcome the main drawback of the constrained k-means clustering, and improve the quality of the clustering. Indeed, it takes into account the underlying structure of the low-voltage distribution networks beneath the voltage measurements without a priori knowledge on the topology of the network. Both methods are analysed with real measurements from a distribution network in Belgium. The proposed algorithm shows superior performance in different settings, e.g. when the ratio of single-phase over three- phase meters in the network is high, when the period over which the voltages are averaged is longer than one minute, etc.
Disciplines :
Energy
Author, co-author :
Olivier, Frédéric ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Sutera, Antonio ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Geurts, Pierre ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Fonteneau, Raphaël ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Ernst, Damien ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Language :
English
Title :
Phase Identification of Smart Meters by Clustering Voltage Measurements
Publication date :
June 2018
Event name :
XX Power Systems Computation Conference (PSCC 2018)
Event place :
Dublin, Ireland
Event date :
from 11-06-2018 to 15-06-2018
Audience :
International
Main work title :
Proceedings of the XX Power Systems Computation Conference (PSCC 2018)
Peer reviewed :
Peer reviewed

#### Statistics

Number of views
1185 (68 by ULiège)
1227 (38 by ULiège)

Scopus citations®

35
Scopus citations®
without self-citations
32
OpenCitations

16

#### Bibliography

• W. Wang, N. Yu, B. Foggo, J. Davis, and J. Li, "Phase Identification in Electric Power Distribution Systems by Clustering of Smart Meter Data, " in Proc. of 2016 IEEE Machine Learning and Applications (ICMLA), 2016.
• A. Dubey, S. Santoso, and A. Maitra, "Understanding photovoltaic hosting capacity of distribution circuits, " in Proc. of 2015 IEEE Power & Energy Society General Meeting, 2015.
• B. Bletterie, A. Gorsek, A. Abart, and M. Heidl, "Understanding the effects of unsymmetrical infeed on the voltage rise for the design of suitable voltage control algorithms with PV, " in Proc. of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 2011.
• S. Cundeva, M. Bollen, and D. Schwanz, "Hosting capacity of the grid for wind generators set by voltage magnitude and distortion levels, " in Proc. of 2016 Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MedPower), 2016.
• D. Schwanz, F. Moller, S. K. Ronnberg, J. Meyer, and M. H. Bollen, "Stochastic assessment of voltage unbalance due to single-phaseconnected solar power, " in Proc. of 2016 International Conference on Harmonics and Quality of Power (ICHQP), 2016.
• S. J. Pappu, N. Bhatt, R. Pasumarthy, and A. Rajeswaran, "Identifying Topology of Low Voltage (LV) Distribution Networks Based on Smart Meter Data, " IEEE Transactions on Smart Grid, 2017.
• R. Mitra, R. Kota, S. Bandyopadhyay, V. Arya, B. Sullivan, R. Mueller, H. Storey, and G. Labut, "Voltage Correlations in Smart Meter Data, " in Proc. of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015.
• J. D. Watson, J. Welch, and N. R. Watson, "Use of Smart-meter Data to Determine Distribution System Topology, " IET Journal of Engineering, 2016.
• A. Rajeswaran, N. P. Bhatt, R. Pasumarthy et al., "A Novel Approach for Phase Identification in Smart Grids Using Graph Theory and Principal Component Analysis, " in Proc. of 2016 IEEE American Control Conference (ACC), 2016.
• H. Pezeshki and P. J. Wolfs, "Consumer Phase Identification in a Three Phase Unbalanced LV Distribution Network, " in Proc. of 2012 Innovative Smart Grid Technologies (ISGT Europe), 2012.
• F. Olivier, D. Ernst, and R. Fonteneau, "Automatic Phase Identification of Smart Meter Measurement Data, " in Proc. of the 24th International Conference on Electricity Distribution (CIRED), June 2017.
• S. Lloyd, "Least Qquares Quantization in PCM, " IEEE Transactions on Information Theory, vol. 28, no. 2, pp. 129-137, 1982.
• K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, "Constrained Kmeans Clustering with Background Knowledge, " in Proc. of International Conference on Machine Learning, 2001, pp. 577-584.
• W. Wang, N. Yu, and Z. Lu, "Advanced metering infrastructure data driven phase identification in smart grid, " GREEN 2017 Forward, p. 22, 2017.