Article (Scientific journals)
Single-domain antibody fragments with high conformational stability.
Dumoulin, Mireille; Conrath, Katja; Van Meirhaeghe, Annemie et al.
2002In Protein Science: A Publication of the Protein Society, 11 (3), p. 500-15
Peer Reviewed verified by ORBi
 

Files


Full Text
Dumoulin_2002.pdf
Publisher postprint (262.01 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Amino Acid Sequence; Animals; Bacterial Proteins; Camelids, New World; Camels; Hot Temperature; Humans; Immunoglobulin Fragments/chemistry/immunology; Molecular Sequence Data; Muramidase/immunology; Protein Conformation; Protein Denaturation; Protein Folding; Protein Structure, Tertiary; Spectrometry, Fluorescence; Spectroscopy, Fourier Transform Infrared; beta-Lactamases/immunology
Abstract :
[en] A variety of techniques, including high-pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single-domain antigen binders derived from camelid heavy-chain antibodies with specificities for lysozymes, beta-lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical-induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two-state mechanism (N <--> U), where only the native and the denatured states are significantly populated. Thermally-induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat-induced denaturation (apparent T(m) = 60-80 degrees C), and display high conformational stabilities (DeltaG(H(2)O) = 30-60 kJ mole(-1)). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy-chain antibody fragments are of special interest for biotechnological and medical applications.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Dumoulin, Mireille  ;  Université de Liège - ULiège > Département des sciences de la vie > Enzymologie, Centre d'Ingénierie des Protéines
Conrath, Katja
Van Meirhaeghe, Annemie
Meersman, Filip
Heremans, Karel
Frenken, Leon G J
Muyldermans, Serge
Wyns, Lode
Matagne, André  ;  Université de Liège - ULiège > Département des sciences de la vie > Enzymologie, Centre d'Ingénierie des Protéines
Language :
English
Title :
Single-domain antibody fragments with high conformational stability.
Publication date :
2002
Journal title :
Protein Science: A Publication of the Protein Society
ISSN :
0961-8368
eISSN :
1469-896X
Publisher :
Cold Spring Harbor Laboratory Press, Woodbury, United States - New York
Volume :
11
Issue :
3
Pages :
500-15
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 14 September 2009

Statistics


Number of views
174 (20 by ULiège)
Number of downloads
476 (10 by ULiège)

Scopus citations®
 
549
Scopus citations®
without self-citations
486
OpenCitations
 
444
OpenAlex citations
 
586

Bibliography


Similar publications



Contact ORBi