Tunisian Nigella sativa; developmental stages; biochemical characteristics; phytochemicals; phytotoxicity
Abstract :
[en] The present study was conducted to study some biochemical characteristics of Tunisian Nigella sativa at different developmental stages of plant growth (vegetative, flowering and fruiting stages) and to screen the chemical constituents and the phytotoxic activity of their organic extracts on lettuce (Lactuca sativa L.). The GC–MS analysis of petroleum ether fractions revealed that N. sativa seeds were rich in linoleic acid (58% of total fatty acids), oleic acid (22% of total fatty acids) and palmitic acid (12% of total fatty acids). The fatty acid composition of aerial parts showed an increase in the level of saturated fatty acids accompanied by a concomitant decrease of polyunsaturated fatty acids levels during the developmental stage. The phytochemical investigation showed that among the organic extracts, the methanolic extract from aerial parts harvested at the fruiting stage contained the highest amounts of phenolic and flavonoid
compounds. The phytotoxic study revealed that N. sativa negatively affected the growth of lettuce plants.
This effect was largely dependent on the developmental stage at which material was collected and the nature of extracting solvent. The methanolic extract of aerial parts harvested at the vegetative stage was the most active on seedling growth of lettuce.
Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar FA. 2013. A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed 3(5): 337–352. doi:10.1016/S2221-1691(13)60075-1.
Ahmed M, Wardle DA. 1994. Allelopathic potential of vegetative and flowering ragwort (Senecio jacobaea L.) plants against associated pasture species. Plant Soil 164: 61–68. doi:10.1007/BF00010111.
Akporhonor EE, Egwaikhide PA, Odilora CA. 2005. Studies on the variation of macro nutrient level uptake of maize plants stem with age. J Appl Sci Environ Manage 9(1): 197–199.
Arora K. 2013. Allelopathic influence of Cassia occidentalis L. on growth of Zea mays L. Ind J Sci Res Technol 1(1): 15–17.
Atta MB. 2003. Some characteristics of nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Food Chem 83: 63–68.10.1016/S0308-8146(03)00038-4
Atta-ur-Rahman MS, Cun-heng H, Clardy J. 1985. Isolation and structure determination of nigellicine, a novel alkaloid from the seeds of Nigella sativa. Tetrahedron Lett 26: 2759–2762.10.1016/S0040-4039(00)94904-9
Atta-ur-Rahman MS, Malik S. 1992. Nigellimine: a new isoquinoline alkaloid from the seeds of Nigella sativa. J Nat Prod 55: 676–678.10.1021/np50083a020
Atta-ur-Rahman MS, Malik, S, Hasan, SS, Choudhary, MI, Ni, C-Z, Clardy J. 1995. Nigellidine–a new indazole alkaloid from the seeds of Nigella sativa. Tetrahedron Lett 36: 1993–1996.10.1016/0040-4039(95)00210-4
Bita CE, Gerats T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4: 273–290.
Bojovic B, Stojanovic J. 2005. Chlorophylland carotenoid content in wheat cultivars as a function of mineral nutrition. Arch Biol Sci 57(4): 283–290.10.2298/ABS0504283B
Bourgou S, Bettaieb I, Hamrouni I, Marzouk B. 2012. Effect of NaCl on fatty acids, phenolics and antioxidant activity of Nigella sativa organs. Acta Physiol Plant 34: 379–386. doi:10.1007/s11738-011-0836-3.
Bourgou S, Ksouri R, Bellila A, Skandrani I, Falleh H, Marzouk B. 2008. Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. CR Biol 331: 48–55.10.1016/j.crvi.2007.11.001
Bourgou S, Pichette A, Lavoie S, Marzouk B, Legault J. 2012. Terpenoids isolated from Tunisian Nigella sativa L. essential oil with antioxidant activity and the ability to inhibit nitric oxide production. Flav Frag J 27: 69–74.10.1002/ffj.v27.1
Broadhurst RB, Jones WT. 1978. Analysis of condensed tannins using acidified vanillin. J Sci Food Agric 29: 788–794.10.1002/(ISSN)1097-0010
Burits M, Bucar F. 2000. Antioxidant activity of Nigella sativa essential oil. Phytother Res 14(5): 323–328.
Cheikh-Rouhou S, Besbes S, Hentati B, Blecker C, Deroanne C, Attia H. 2007. Nigella sativa L: chemical composition and physicochemical characteristics of lipid fraction. Food Chem 101: 673–681.10.1016/j.foodchem.2006.02.022
Chiapusio G, Sánchez AM, Reigosa MJ, González L, Pellissier F. 1997. Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23: 2445–2453. doi:10.1023/B:JOEC.0000006658.27633.15.
Chung IM, Ahn JK, Yun SJ. 2001. Assessment of allelopathic potential of barnyard grass (Echinochloa crus-galli) on rice (Oryza sativa L.) cultivars. Crop Protec 20: 921–928.10.1016/S0261-2194(01)00046-1
Çirak C, Radusiene J, Camass N. 2008. Pseudohypericin and hyperforin in two Turkish Hypericum species: variation among plant parts and phenological stages. Biochem Syst Ecol 36: 377–382.
Çιrak C, Radušienė J, Janulis V, Ivanauskas L. 2007. Secondary metabolites in Hypericum perfoliatum: variation among plant parts and phenological stages. Bot Helv 117: 29–36. doi:10.1007/s00035-007-0777-z.
DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28(3): 350–356.10.1021/ac60111a017
Ervin GN, Wetzel RG. 2003. An ecological perspective of allelochemical interference in land–water interface communities. Plant Soil 256: 13–28. doi:10.1023/A:1026253128812.
Feussner I, Kühn H, Wasternack C. 2001. Lipoxygenase dependent degradation of storage lipids. Trends Plant Sci 6: 268–273.10.1016/S1360-1385(01)01950-1
Fleury P, Leclerc M. 1943. La méthode nitro-vanadomolybdique de Misson pour le dosage colorimétrique du phosphore. Son intérêt en Biochimie. Bull Soc Chim Biol 25: 201–205.
Huijser P, Schmid M. 2011. The control of developmental phase transitions in plants. Development 138: 4117–4129. doi:10.1242/dev.063511.
Inderjit K, Keating KI. 1999. Allelopathy: principles, procedures, processes, and promises for biological control. Adv Agron 67: 141–231. doi:10.1016/S0065-2113(08)60515-5.
Kakisawa H, Asari F, Kusumi T, Toma T, Sakurai T, Oohusa T, Hara Y, Chiharai M. 1988. An allelopathic fatty-acid from the brown alga Cladosiphon okamuranus. Phytochemistry 27: 731–735.10.1016/0031-9422(88)84084-6
Karimi N, Yari M, Ghasmpour HR. 2012. Identification and comparison of essential oil composition and mineral changes in different phenological stages of Satureja hortensis L. Iranian J Plant Physio 3(1): 577–582.
Konow EA, Wang YT. 2001. Irradiance levels affect in vitro and greenhouse growth, flowering, and photosynthetic behavior of a hybrid Phalaenopsis orchid. J Am Soc Hortic Sci 126(5): 531–536.
Larkindale J, Huang B. 2004. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161: 405–413. doi:10.1078/0176-1617-01239.
Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA. 2010. Phenolics and plant allelopathy. Molecules 15: 8933–8952.10.3390/molecules15128933
Liu DL, An M, Wu H. 2007. Implementation of WESIA: Whole-range evaluation of the strength of inhibition in allelopathic-bioassay. Allelopathy J 19: 203–214.
Mariod AA, Ibrahim RM, Ismail M, Ismail N. 2009. Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chem 116: 306–312.10.1016/j.foodchem.2009.02.051
Martin-Prével P, Gonard J, Gautier P. 1984. Analyse végétale dans le contrôle de l’alimentation des plantes tempérées et tropicales [Plant analysis in the control of the nutrition of temperate and tropical plants]. French: Edition Lavoisier TEC & DOC, 810 p.
Merfort I, Wray V, Barakat HH, Hussein SAM, Nawwar MAM, Willuhn G. 1997. Flavonol triglycosides from seeds of Nigella sativa. Phytochemistry 46: 359–363.10.1016/S0031-9422(97)00296-3
Millar AA, Smith MA, Kunst L. 2000. All fatty acids are not equal: discrimination in plant membrane lipids. Trends Plant Sci 5(3): 95–101.10.1016/S1360-1385(00)01566-1
Naghiloo S, Movafeghi A, Delazar A, Nazemiyeh H, Asnaashari S, Dadpour MR. 2012. Ontogenetic variation of volatiles and antioxidant Activity in leaves of Astragalus compactus lam. (fabaceae). Excli J 11: 436–443.
Omezzine F, Bouaziz M, Simmonds MSJ, Haouala R. 2014. Variation in chemical composition and allelopathic potential of mixoploid Trigonella foenum-graecum L. with developmental stages. Food Chem 148: 188–195.10.1016/j.foodchem.2013.10.040
Omezzine F, Haouala R. 2013. Effect of Trigonella foenum-graecum L. development stages on some phytochemicals content and allelopathic potential. Sci Hortic 160: 335–344. doi:10.1016/j.scienta.2013.06.023.
Quintana N, El Kassis EG, Stermitz FR, Vivanco JM. 2009. Phytotoxic compounds from roots of Centaurea diffusa Lam. Plant Signal Behav 4(1): 9–14.10.4161/psb.4.1.7487
Sultan MT, Butt MS, Anjum FM, Jamil A, Akhtar S, Nasir M. 2009. Nutritional profile of indigenous cultivar of black cumin seeds and antioxidant potential of its fixed and essential oil. Pak J Bot 41(3): 1321–1330.
Thapliyal PN, Nene YL. 1970. Influence of growth-stage of Anagallis arvensis on its fungitoxicity. Econ Bot 24(3): 283–285.10.1007/BF02860663
Toma CC, Simu GM, Hanganu D, Olah N, Vata FMG, Hammami C, Hammami M. 2013. Chemical composition of the Tunisian Nigella Sativa. Note II. Profile on fatty oil. Farmacia 61(3): 454–458.
Urban L, Lu P, Thibaud R. 2004. Inhibitory effect of flowering and early fruit growth on leaf photosynthesis in mango. Tree Physiol 24: 387–399.10.1093/treephys/24.4.387
Velioglu YS, Mazza G, Gao L, Oomah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46: 4113–4117. doi:10.1021/jf9801973.
Yang Z, Ohlrogge JB. 2009. Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis β-oxidation mutants. Plant Physiol 150: 1981–1989. doi:10.1104/pp.109.140491.
Yoruk O, Tatar A, Keles ON, Cakir A. 2017. The value of Nigella sativa in the treatment of experimentally induced rhinosinusitis. Acta Otorhinolaryngol Ital 37(1): 32–37. doi:10.14639/0392-100X-1143.
Yu S, Lian H, Wang JW. 2015. Plant developmental transitions: the role of microRNAs and sugars. Curr Opin Plant Biol 27: 1–7.10.1016/j.pbi.2015.05.009
Zhang M, Barg, R, Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., Shabtai, S., Ben-Hayyim, G., 2005. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44: 361–371. doi:10.1111/j.1365-313X.2005.02536.x.
Zribi I, Omezzine F, Haouala R. 2014. Variation in phytochemical constituents and allelopathic potential of Nigella sativa with developmental stages. S Afr J Bot 94: 255–262. doi:10.1016/j.sajb.2014.07.009.