[en] We investigated CH4 oxidation in the water column of Lake Kivu, a deep meromictic tropical lake with CH4-rich anoxic deep waters. Depth profiles of dissolved gases (CH4 and N2O) and a diversity of potential electron acceptors for anaerobic CH4 oxidation (NO3−, SO4 2−, Fe and Mn oxides) were determined during six field campaigns between June 2011 and August 2014. Denitrification measurements based on stable isotope labelling experiments were performed twice. In addition, we quantified aerobic and anaerobic CH4 oxidation, NO3− and SO4 2− consumption rates,with and without the presence of an inhibitor of SO4 2−-reducing bacteria activity. Aerobic CH4 production was also measured in parallel incubations with the addition of an inhibitor of aerobic CH4 oxidation. Themaximu m aerobic and anaerobic CH4 oxidation rates were estimated to be 27±2 and 16±8 μmol/L/d, respectively. We observed a difference in the relative importance of aerobic and anaerobic CH4 oxidation during the rainy and the dry season, with a greater role for aerobic oxidation during the dry season. Lower anaerobic CH4 oxidation rates were measured in presence of molybdate in half of the measurements, suggesting the occurrence of linkage between SO4 2− reduction and anaerobic CH4 oxidation. NO3− consumption and dissolved Mn production rates were never high enough to sustain themeasured anaerobic CH4 oxidation, reinforcing the idea of a coupling between SO4 2− reduction and CH4 oxidation in the anoxic waters of Lake Kivu. Finally, significant rates (up to 0.37 μmol/L/d) of pelagic CH4 production were also measured in oxygenated waters.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Roland, Fleur ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (AGO)
Morana, Cédric ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (AGO)
Darchambeau, François ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (AGO)
Crowe, Sean A.
Thamdrup, Bo
Descy, Jean-Pierre ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (AGO)
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (AGO)
Language :
English
Title :
Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kivu)
Publication date :
31 December 2018
Journal title :
Journal of Great Lakes Research
ISSN :
0380-1330
eISSN :
2773-0719
Publisher :
International Association for Great Lakes Research
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
á Norði, K., Thamdrup, B., Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim. Cosmochim. Acta 132 (2014), 141–150.
á Norði, K., Thamdrup, B., Schubert, C.J., Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment. Limnol. Oceanogr. 58 (2013), 546–554.
Achtnich, C., Bak, F., Conrad, R., Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol. Fertil. Soils 19 (1995), 65–72.
Angel, R., Matthies, D., Conrad, R., Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One, 6, 2011, e20453.
APHA, Standard Methods for the Examination of Water and Wastewater. 1998, American Public Health Association.
Bastviken, D., Ejlertsson, J., Tranvik, L., Measurement of methane oxidation in lakes: a comparison of methods. Environ. Sci. Technol. 36 (2002), 3354–3361.
Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M., Enrich-Prast, A., Freshwater methane emissions offset the continental carbon sink. Science, 331, 2011, 50.
Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., Pfannkuche, O., A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407 (2000), 623–626.
Bogard, M.J., del Giorgio, P.A., Boutet, L., Chaves, M.C.G., Prairie, Y.T., Merante, A., Derry, A.M., Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat. Commun., 5, 2014.
Borges, A.V., Abril, G., Delille, B., Descy, J.P., Darchambeau, F., Diffusive methane emissions to the atmosphere from Lake Kivu (Eastern Africa). J. Geophys. Res. Biogeosci., 116, 2011.
Borrel, G., Jézéquel, D., Biderre-Petit, C., Morel-Desrosiers, N., Morel, J.-P., Peyret, P., Fonty, G., Lehours, A.-C., Production and consumption of methane in freshwater lake ecosystems. Res. Microbiol. 162 (2011), 832–847.
Braman, R.S., Hendrix, S.A., Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection. Anal. Chem. 61 (1989), 2715–2718.
Canfield, D.E., Kristensen, E., Thamdrup, B., The sulfur cycle. Adv. Mar. Biol. 48 (2005), 313–381.
Cline, J.D., Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14 (1969), 454–458.
Conrad, R., The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1 (2009), 285–292.
Crowe, S.A., O'Neill, A.H., Katsev, S., Hehanussa, P., Haffner, G.D., Sundby, B., Mucci, A., Fowle, D.A., The biogeochemistry of tropical lakes: a case study from Lake Matano, Indonesia. Limnol. Oceanogr. 53 (2008), 319–331.
Crowe, S., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M., Kessler, J., Reeburgh, W., Roberts, J., The methane cycle in ferruginous Lake Matano. Geobiology 9 (2011), 61–78.
Cui, M., Ma, A., Qi, H., Zhuang, X., Zhuang, G., Anaerobic oxidation of methane: an “active” microbial process. Microbiology 4 (2015), 1–11.
Dalsgaard, T., Bak, F., Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl. Environ. Microbiol. 60 (1994), 291–297.
Deutzmann, J.S., Schink, B., Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl. Environ. Microbiol. 77 (2011), 4429–4436.
Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., De Beer, D., Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464 (2010), 543–548.
Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W., Tang, K.W., Microbial methane production in oxygenated water column of an oligotrophic lake. PNAS 108 (2011), 19657–19661.
Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W., Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500 (2013), 567–570.
Hu, S., Zeng, R.J., Keller, J., Lant, P.A., Yuan, Z., Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environ. Microbiol. Rep. 3 (2011), 315–319.
İnceoğlu, Ö., Llirós, M., García-Armisen, T., Crowe, S.A., Michiels, C., Darchambeau, F., Descy, J.-P., Servais, P., Distribution of bacteria and archaea in meromictic tropical Lake Kivu (Africa). Aquat. Microb. Ecol. 74 (2015), 215–233.
Iversen, N., Jørgensen, B., Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30 (1985), 944–955.
Iversen, N., Oremland, R.S., Klug, M.J., Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr. 32 (1987), 804–814.
Jannasch, H.W., Methane oxidation in Lake Kivu (central Africa). Limnol. Oceanogr. 20 (1975), 860–864.
Jones, C., Crowe, S.A., Sturm, A., Leslie, K.L., MacLean, L.C.W., Katsev, S., Henny, C., Fowle, D.A., Canfield, D.E., Biogeochemistry of manganese in ferruginous Lake Matano, Indonesia. Biogeosciences 8 (2011), 2977–2991.
Jørgensen, B.B., Weber, A., Zopfi, J., Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Res. Pt. I 48 (2001), 2097–2120.
Karl, D.M., Beversdorf, L., Björkman, K.M., Church, M.J., Martinez, A., Delong, E.F., Aerobic production of methane in the sea. Nat. Geosci. 1 (2008), 473–478.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J.G., Dlugokencky, E.J., Bergamaschi, P., Bergmann, D., Blake, D.R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E.L., Houweling, S., Josse, B., Fraser, P.J., Krummel, P.B., Lamarque, J.-F., Langenfelds, R.L., Le Quere, C., Naik, V., O'Doherty, S., Palmer, P.I., Pison, I., Plummer, D., Poulter, B., Prinn, R.G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D.T., Simpson, I.J., Spahni, R., Steele, L.P., Strode, S.A., Sudo, K., Szopa, S., van der Werf, G.R., Voulgarakis, A., van Weele, M., Weiss, R.F., Williams, J.E., Zeng, G., Three decades of global methane sources and sinks. Nat. Geosci. 6 (2013), 813–823.
Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S., Keppler, F., Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences 13 (2016), 3163–3174.
Li, X.N., Taylor, G.T., Astor, Y., Varela, R., Scranton, M.I., The conundrum between chemoautotrophic production and reductant and oxidant supply: a case study from the Cariaco Basin. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 61 (2012), 1–10.
Libes, S.M., An Introduction to Marine Biogeochemistry. 1992, John Wiley & Sons.
Lopes, F., Viollier, E., Thiam, A., Michard, G., Abril, G., Groleau, A., Prévot, F., Carrias, J.-F., Albéric, P., Jézéquel, D., Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl. Geochem. 26 (2011), 1919–1932.
Megraw, S.R., Knowles, R., Effect of picolinic acid (2-pyridine carboxylic acid) on the oxidation of methane and ammonia in soil and in liquid culture. Soil Biol. Biochem. 22 (1990), 635–641.
Miranda, K.M., Espey, M.G., Wink, D.A., A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol. Chem. 5 (2001), 62–71.
Morana, C., Darchambeau, F., Roland, F.A.E., Borges, A.V., Muvundja, F.A., Kelemen, Z., Masilya, P., Descy, J.P., Bouillon, S., Biogeochemistry of a large and deep tropical lake (Lake Kivu, East Africa): insights from a stable isotope study covering an annual cycle. Biogeosciences 12 (2015), 4953–4963.
Morana, C., Borges, A.V., Roland, F.A.E., Darchambeau, F., Descy, J.P., Bouillon, S., Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa). Biogeosciences 12 (2015), 2077–2088.
Morana, C., Roland, F.A., Crowe, S.A., Llirós, M., Borges, A.V., Darchambeau, F., Bouillon, S., Chemoautotrophy and anoxygenic photosynthesis within the water column of a large meromictic tropical lake (Lake Kivu, East Africa). Limnol. Oceanogr. 61 (2016), 1424–1437.
Murray, J.W., Codispoti, L.A., Friederich, G.E., Oxidation-reduction environments. Aquatic Chemistry, 1995, American Chemical Society, 157–176.
Nisbet, E.G., Dlugokencky, E.J., Manning, M.R., Lowry, D., Fisher, R.E., France, J.L., Michel, S.E., Miller, J.B., White, J.W.C., Vaughn, B., Bousquet, P., Pyle, J.A., Warwick, N.J., Cain, M., Brownlow, R., Zazzeri, G., Lanoisellé, M., Manning, A.C., Gloor, E., Worthy, D.E.J., Brunke, E.G., Labuschagne, C., Wolff, E.W., Ganesan, A.L., Rising atmospheric methane: 2007–2014 growth and isotopic shift. Glob. Biogeochem. Cycles 30 (2016), 1356–1370.
Pasche, N., Dinkel, C., Mu, B., Schmid, M., Wu, A., Wehrlia, B., Physical and biogeochemical limits to internal nutrient loading of meromictic Lake Kivu. Limnol. Oceanogr. 54 (2009), 1863–1873.
Pasche, N., Schmid, M., Vazquez, F., Schubert, C.J., Wüest, A., Kessler, J.D., Pack, M.A., Reeburgh, W.S., Bürgmann, H., Methane sources and sinks in Lake Kivu. J. Geophys. Res. Biogeosci., 116, 2011, G03006.
Raghoebarsing, A.A., Pol, A., Van de Pas-Schoonen, K.T., Smolders, A.J., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Damsté, J.S.S., den Camp, H.J.O., Jetten, M.S., A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440 (2006), 918–921.
Roland, F.A.E., Darchambeau, F., Morana, C., Borges, A.V., Nitrous oxide and methane seasonal variability in the epilimnion of a large tropical meromictic lake (Lake Kivu, East-Africa). Aquat. Sci. 79 (2016), 209–218.
Roland, F.A.E., Darchambeau, F., Borges, A.V., Morana, C., De Brabandere, L., Thamdrup, B., Crowe, S.A., Denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium in an east African Great Lake (Lake Kivu). Limnol. Oceanogr. 63 (2017), 687–701.
Rudd, J.W., Methane oxidation in Lake Tanganyika (East Africa). Limnol. Oceanogr. 25 (1980), 958–963.
Rudd, J.W.M., Hamilton, R.D., Campbell, N.E.R., Measurement of microbial oxidation of methane in lake water. Limnol. Oceanogr. 19 (1974), 519–524.
Sarmento, H., Isumbisho, M., Descy, J.-P., Phytoplankton ecology of Lake Kivu (eastern Africa). J. Plankton Res. 28 (2006), 815–829.
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.G., Dlugokencky, E.J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F.N., Castaldi, S., Jackson, R.B., Alexe, M., Arora, V.K., Beerling, D.J., Bergamaschi, P., Blake, D.R., Brailsford, G., Brovkin, V., Bruhwiler, L., Crevoisier, C., Crill, P., Curry, C., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.S., Kleinen, T., Krummel, P., Lamarque, J.F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., McDonald, K.C., Marshall, J., Melton, J.R., Morino, I., O'Doherty, S., Parmentier, F.J.W., Patra, P.K., Peng, C., Peng, S., Peters, G.P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W.J., Saito, M., Schroeder, R., Simpson, I.J., Spahni, R., Steele, P., Takizawa, A., Thornton, B.F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., van Weele, M., van der Werf, G., Weiss, R., Wiedinmyer, C., Wilton, D.J., Wiltshire, A., Worthy, D., Wunch, D.B., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z., Zhu, Q., The global methane budget: 2000–2012. Earth Syst. Sci. Data Discuss. 2016 (2016), 1–79.
Schubert, C.J., Lucas, F., Durisch-Kaiser, E., Stierli, R., Diem, T., Scheidegger, O., Vazquez, F., Müller, B., Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat. Sci. 72 (2010), 455–466.
Shen, L.D., Liu, S., Zhu, Q., Li, X.Y., Cai, C., Cheng, D.Q., Lou, L.P., Xu, X.Y., Zheng, P., Hu, B.L., Shen, Distribution and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in the sediments of the Qiantang River. Microb. Ecol. 67 (2014), 341–349.
Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S.G., Eckert, W., Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 56 (2011), 1536–1544.
Sturm, A., Fowle, D.A., Jones, C., Leslie, K., Nomosatryo, S., Henny, C., Canfield, D.E., Crowe, S.A., Rates and pathways of CH4 oxidation in ferruginous Lake Matano, Indonesia. Biogeosci. Discuss. 2016 (2016), 1–34.
Tang, K.W., McGinnis, D.F., Frindte, K., Brüchert, V., Grossart, H.-P., Paradox reconsidered: methane oversaturation in well-oxygenated lake waters. Limnol. Oceanogr. 59 (2014), 275–284.
Tang, K.W., McGinnis, D.F., Ionescu, D., Grossart, H.-P., Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ. Sci. Technol. Lett. 3 (2016), 227–233.
Taylor, G.T., Iabichella, M., Ho, T.-Y., Scranton, M.I., Thunell, R.C., Muller-Karger, F., Varela, R., Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol. Oceanogr. 46 (2001), 148–163.
Thamdrup, B., Dalsgaard, T., Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68 (2002), 1312–1318.
Wang, Y., Zhu, G., Harhangi, H.R., Zhu, B., Jetten, M.S.M., Yin, C., Op den Camp, H.J.M., Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS Microbiol. Lett. 336 (2012), 79–88.
Weiss, R.F., Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography. J. Chromatogr. Sci. 19 (1981), 611–616.
Weiss, R.F., Price, B.A., Nitrous oxide solubility in water and seawater. Mar. Chem. 8 (1980), 347–359.
Westermann, P., Ahring, B.K., Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp. Appl. Environ. Microbiol. 53 (1987), 2554–2559.
Yadav, V.K., Archer, D.B., Sodium molybdate inhibits sulphate reduction in the anaerobic treatment of high-sulphate molasses wastewater. Appl. Microbiol. Biotechnol. 31 (1989), 103–106.
Yamamoto, S., Alcauskas, J.B., Crozier, T.E., Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21 (1976), 78–80.
Zigah, P.K., Oswald, K., Brand, A., Dinkel, C., Wehrli, B., Schubert, C.J., Methane oxidation pathways and associated methanotrophic communities in the water column of a tropical lake. Limnol. Oceanogr. 60 (2015), 553–572.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.