Paper published in a book (Scientific congresses and symposiums)
Comparison of deep transfer learning strategies for digital pathology
Mormont, Romain; Geurts, Pierre; Marée, Raphaël
2018In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
Peer reviewed
 

Files


Full Text
mormont2018-comparison.pdf
Publisher postprint (2.19 MB)
Download
Annexes
mormont2018comparison-supp.pdf
Publisher postprint (2.03 MB)
Supplementary materials
Download
mormont2018comparison-poster.pdf
Publisher postprint (6.27 MB)
Poster CVMI 2018
Download
code.zip
Publisher postprint (110.16 kB)
Code
Download
mormont2018comparison-slides.pdf
Publisher postprint (10.13 MB)
Slides CVMI 2018
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
deep learning; transfer learning; digital pathology; object recognition
Abstract :
[en] In this paper, we study deep transfer learning as a way of overcoming object recognition challenges encountered in the field of digital pathology. Through several experiments, we investigate various uses of pre-trained neural network architectures and different combination schemes with random forests for feature selection. Our experiments on eight classification datasets show that densely connected and residual networks consistently yield best performances across strategies. It also appears that network fine-tuning and using inner layers features are the best performing strategies, with the former yielding slightly superior results.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Computer science
Author, co-author :
Mormont, Romain  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Marée, Raphaël  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Comparison of deep transfer learning strategies for digital pathology
Alternative titles :
[fr] Comparaison de stratégies de transfert profond pour la pathologie digitale
Publication date :
2018
Event name :
3rd Computer Vision for Microscopy Image Analysis (CVMI) workshop at the 2018 IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR)
Event organizer :
IEEE Computer Society, Computer Vision Foundation
Event place :
Salt Lake City, United States
Event date :
du 18 juin 2018 au 22 juin 2018
Audience :
International
Main work title :
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
Publisher :
IEEE
Peer reviewed :
Peer reviewed
Available on ORBi :
since 21 April 2018

Statistics


Number of views
832 (130 by ULiège)
Number of downloads
1207 (87 by ULiège)

Scopus citations®
 
91
Scopus citations®
without self-citations
87

Bibliography


Similar publications



Contact ORBi