Abstract :
[en] With the arrival of electrified vehicles, the air-conditioning system has to be reconsidered. Battery
cooling management system and high level of comfort for passengers make the single evaporator airconditioning system a multi-evaporator one. In a multi-evaporator air-conditioning system, evaporating pressures are equal in each evaporator so that evaporators are coupled dynamically. However, the demand in cooling capacity and temperature target can vary from each other. For an operating point with a first evaporator working at high load and a second at low partial load, thermal interaction can occur from the superheated refrigerant coming from a first evaporator to the outlet of a second evaporator. This phenomenon makes the second evaporator sleeping since its expansion valve bulb misreads the superheat and closes. Furthermore, sleeping evaporator looks like an extreme case of refrigerant maldistribution in the evaporator. Refrigerant maldistribution is then investigated to show some drawbacks and advantages multi-evaporator air-conditioning systems (MEAC) have to face or can benefit by comparing two types of expansion valve: thermostatic and electronic ones. In this paper, sleeping evaporator and refrigerant maldistribution phenomena are experimentally investigated in order to propose in the future a robust control of an automotive MEAC. A test bench was built to compare two types of expansion valves (thermostatic/electronic) and study their behaviours in steady and transient state to tackle sleeping evaporators and benefit from refrigerant maldistribution.
Scopus citations®
without self-citations
25