[en] This study reevaluated the possibility of using predegenerated nerves as donor nerve allografts for nerve repair and compared the results of functional recovery to those obtained after standard, fresh nerve allograft repair. Twenty donor rats underwent a ligature/ section of the left sciatic nerve 4 weeks before nerve graft harvesting. Forty recipient rats underwent severing of the left sciatic nerve leaving a 15-mm gap between the nerve stumps. Graft repair was undertaken using either the predegenerated left sciatic nerve of the 20 donor rats (predegenerated group, 20 recipient rats) or the normal right sciatic nerve of the 20 donor rats (fresh group, 20 recipient rats). Recovery of function was assessed by gait analysis, electrophysiologic testing and histologic studies. Walking tracks measurements at 2 and 3 months, electromyography parameters at 2 and 3 months, peroperative nerve conduction velocity and nerve action potential amplitude measurements at 3 months, as well as assessments of myelinated nerve fiber density and surface of myelination showed that fresh and predegenerated nerve grafts induced a comparable return of function although there was some trend in higher electrophysiologic values in the predegenerated group. The only slight but significant difference was a larger mean nerve fiber diameter in the nerve segment distal to a predegenerated nerve graft compared to a fresh nerve graft. Although our study does not show a dramatic long-term advantage for predegenerated nerve grafts compared to fresh nerve grafts, their use as prosthetic material is encouraging.
Disciplines :
Neurology Orthopedics, rehabilitation & sports medicine
Author, co-author :
Dubuisson, Annie ; Université de Liège - ULiège > Département des sciences cliniques > Département des sciences cliniques
Foidart-Dessalle, Marguerite ; Université de Liège - ULiège > Département des sciences de la motricité > Biomécanique
Reznik, Michel ; Université de Liège - ULiège > Services généraux (Faculté de médecine) > Relations académiques et scientifiques (Médecine)
Grosdent, Jean-Claude ; Centre Hospitalier Universitaire de Liège - CHU > Hématologie biologique et immuno hématologie
Stevenaert, Achille ; Université de Liège - ULiège > Services généraux (Faculté de médecine) > Relations académiques et scientifiques (Médecine)
Language :
English
Title :
Predegenerated Nerve Allografts Versus Fresh Nerve Allografts in Nerve Repair
Archibald, S. J., C. Krarup, J. Shefner, S. T. Li, and R. D. Madison. 1991. A collagen-based nerve guide conduit for peripheral nerve repair: An electrophysiological study of nerve regeneration in rodents and non human primates. J. Comp. Neurol. 306: 682-696.
Avellino, A. M., D. Hart, A. T. Dailey, S. MacKinnon, D. Ellegala, and M. Kliot. 1995. Differential macrophage responses in the peripheral and central nervous system during wallerian degeneration of axons. Exp. Neurol. 136(2): 183-198.
Bähr, M., G. W. Eschweiler, and H. Wolburg. 1992. Precrushed sciatic nerve grafts enhance the survival and axonal regrowth of retinal ganglion cells in adult rats. Exp. Neurol. 116: 13-22.
Bahr, M., and C. Przyrembel. 1995. Myelin from peripheral and central nervous system is a nonpermissive substrate for retinal ganglion cell axons. Exp. Neurol. 134(1): 87-93.
Bain, J. R., S. E. Mackinnon, and D. A. Hunter. 1989. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast. Reconstr. Surg. 83(1): 129-136.
Bolin, L. M., A. N. Verity, J. E. Silver, E. M. Shooter, and J. S. Abrams. 1995. Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J. Neurochem. 64(2): 850-858.
Cajal, S. R. Y. 1928. Degeneration and Regeneration of the Nervous System. Oxford Univ. Press, London, England.
Carr, M. M., T. J. Best, S. E. Mackinnon, and P. J. Evans. 1992. Strain differences in autotomy in rats undergoing sciatic nerve transection and repair. Ann. Plast. Surg. 25(6): 538-544.
Danielsen, N., J. M. Kerns, B. Holmquist, Q. Zhao, G. Lundborg, and M. Kanje. 1994. Pre-degenerated nerve grafts enhance regeneration by shorting the initial delay period. Brain Res. 666(2): 250-254.
Danielsen, N., J. M. Kerns, B. Holmquist, Q. Zhao, G. Lundborg, and M. Kanje. 1995. Predegeneration enhances regeneration into acellular nerve grafts. Brain Res. 681(1-2): 105-108.
Daniloff, J. K, G. Levi, M. Grumet, F. Rieger, and G. M. Edelman. 1986. Altered expression of neuronal cell adhesion molecules induced by nerve injury and repair. J. Cell. Biol. 103(3): 929-945.
Daston, M. M., and N. Ratner. 1991. Expression of P30, a protein with adhesive properties, in Schwann cells and neurons of the developing and regenerating peripheral nerve. J. Cell Biol. 1112: 1229-1239.
De Medinacelli, L., W. J. Freed, and R. J. Wyatt. 1982. An index of the functional condition of rat sciatic nerve based on measurements made from walking-tracks. Exp. Neurol. 77:634-643.
Dubuisson, A. S., and D. G. Kline. 1992. Indications for peripheral nerve and brachial plexus surgery. Neurol. Clin. NA 10(4): 935-951.
Ellis, J. C., and T. V. McCaffrey. 1985. Nerve grafting. Functional results after primary vs delayed repair. Arch. Otolaryngol. 111: 781-785.
Frykman, G. K., and K. Gramyk. 1991. Results of nerve grafting. In Operative Nerve Repair and Reconstruction (R. H. Gelberman, Ed.), pp. 525-543. Lippincott, Philadelphia.
Fu, S. Y., and T. Gordon. 1995. Contributing factors to poor functional recovery after delayed nerve repair: Prolonged denervation. J. Neurosci. 15: 3886-3895.
George, R., and J. W. Griffin. 1994. Delayed macrophage responses and myelin clearance during wallerian degeneration in the central nervous system: The dorsal radiculotomy model. Exp. Neurol. 192(2): 225-236.
Gordon, L., H. Buncke, D. L. Jewett, B. Muldowney and G. Buncke. 1979. Predegenerated nerve autografts as compared with fresh nerve autografts in freshly cut and precut motor nerve defects in the rat. J. Hand Surg. 4(1): 42-47.
Guenard, V., N. Kleitman, T. K. Morrissey, R. P. Bunge, and P. Aebischer. 1992. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J. Neurosci. 12(9): 3310-3320.
Gulati, A. K. 1988. Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve. J. Neurosurg. 68: 117-123.
Heumann, R., S. Korshing, C. Bandtlow, and J. Thoenen. 1987. Changes of nerve growth factor synthesis in non neuronal cells in response to sciatic nerve transection. J. Cell Biol. 104: 1623-1631.
Ide, C., K. Tohyama, R. Yokota, T. Nitatori, and S. Onodera. 1983. Schwann cell basal lamina and nerve regeneration. Brain Res. 288: 61-75.
Kanaya, F., M. Gonzalez, C-M. Park, J. E. Kutz, H. E. Kleinert, and T. M. Tsai. 1990. Improvement in motor function after brachial plexus surgery. J. Hand Surg. 15: 30-36.
Kerns, J. M., N. Danielsen, B. Holmquist, M. Kanje, and G. Lundborg. 1993. The influence of predegeneration on regeneration through peripheral nerve grafts in the rat. Exp. Neurol. 122: 28-36.
Kline, D. G. 1990. Surgical repair of peripheral nerve injury. Muscle Nerve 13: 843-852.
Lassner, F., M. Becker, and A. Berger. 1995. Degeneration and regeneration in nerve autografts and allografts. Microsurgery 16: 4-8.
Lee, H. K., M. S. Chung, and H. J. Kim. 1993. A comparison of the passage of regenerating axons through old degenerated nerve autografts and fresh nerve autografts in rats. Int. Orthop. 17(3): 193-197.
Lewin-Kowalik, J., Al. Sieron, M. Krause, and S. Kwied. 1990. Predegenerated peripheral nerve grafts facilitate neurite outgrowth from the hippocampus. Brain Res. Bull. 25(5): 669-673.
Meyer, M., I. Matsuoka, C. Wetmore, L. Olson, and H. Thoenen. 1992. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: Different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J. Cell Biol. 119(1): 45-54.
Millesi, H. 1986. The nerve gap. Theory and clinical practice. Hand Clin. 2: 651-663.
Millesi, H. 1991. Indications and technique of nerve grafting. In Operative Nerve Repair and Reconstruction (R. H. Gelberman, Ed.), Lippincott, Philadelphia, pp. 525-543.
Nadim, W., P. N. Anderson, and M. Turmaine. 1990. The role of Schwann cells and basal lamina tubes in the regeneration of axons through long lengths of freeze-killed nerve grafts. Neuropathol. Appl. Neurobiol. 16(5): 411-421.
Ochi, M., M. Wakasa, and Y. Ikuta. 1994. Nerve regeneration in predegenerated basal lamina graft: The effect of duration of predegeneration on axonal extension. Exp. Neurol. 128(2): 216-225.
Oudega, M., S. Varon, and T. Hagg. 1994. Regeneration of adult rat sensory axons into intraspinal nerve grafts: Promoting effects of conditioning lesion and graft predegeneration. Exp. Neurol. 129(2): 194-206.
Salonen, V., H. Aho, M. Röyttä, and J. Peltonen. 1988. Quantitation of Schwann cells and endoneurial fibroblast-like cells after experimental nerve trauma. Acta Neuropathol. (Berlin) 75: 331-336.
Sanders, F. K. and J. Z. Young. 1942. The degeneration and reinnervation of grafted nerves. J. Anat. 76: 143-166.
Seckel, B. R. 1990. Enhancement of peripheral nerve regeneration. Muscle Nerve 13: 785-800.
Siironen, J., M. Sandberg, V. Vuorinen, and M. Röytta. 1992. Expression of type I and III collagens and fibronectin after transection of rat sciatic nerve. Reinnervation compared with denervation. Lab. Invest. 67(1): 7-8.
Sjöberg, J., M. Kanje, and A. Edström. 1988. Influence of non-neuronal cells on regeneration of the rat sciatic nerve. Brain Res. 453: 221-226.
Tedeshi, B., and F. J. Liuzzi. 1992. Axotomized frog sciatic nerve releases diffusible neurite-promoting factors. Brain Res. Dev. Brain Res. 69(1): 97-107.
Waller, A. 1850. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog and observations on the alterations produced thereby in the structure of their primitive fibres. Phil. Trans. R. Soc. London B140: 423-429.
Zhao, Q., and J. M. Kerns. 1994. Effects of predegeneration on nerve regeneration through silicone Y-chambers. Brain Res. 633(1-2): 97-104.
Zellem, R. T., D. W. Miller, J. A. Kenning, E. M. Hoenig, and W. A. Buchheit. 1989. Experimental peripheral nerve repair: Environmental control directed at the cellular level. Microsurgery 10:290-301.