Mars; proton aurora; Lyman alpha; solar activity; CME; CIR
Abstract :
[en] We report observations of the proton aurora at Mars, obtained with the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) ultraviolet spectrograph on board Mars Express between 2004 and 2011. This is a third type of UV aurora that is discovered on Mars, in addition to the discrete and diffuse nightside aurora. It is observed only on the dayside as it is produced by the direct interaction of solar wind protons with the upper atmosphere. The auroral signature is an enhancement of the Lyman-α emission in the order of a few kilorayleighs. The proton aurora features peak emissions around 120 to 150 km. From the full SPICAM database, limb observations have been investigated and six clear cases have been found. We identify either coronal mass ejections and/or corotating interaction regions as triggers for each of these events.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Ritter, Birgit ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Rodriguez, L.; Royal Observatory of Belgium, Brussels, Belgium
Montmessin, F.; LATMOS-CNRS/IPSL/Université de Versailles-St Quentin-en-Yvelines, Guyancourt, France)
Language :
English
Title :
Observations of the Proton Aurora on Mars With SPICAM on Board Mars Express
Publication date :
01 January 2018
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Barabash, S., Lundin, R., Zarnowiecki, R., & Grzedzielski, S. (1995). Diagnostic of energetic neutral particles at Mars by the ASPERA-C instrument for the Mars 96 mission. Advances in Space Research, 16(4), 81–86. https://doi.org/10.1016/0273-1177(95)00212-W
Bertaux, J.-L., Korablev, O., Perrier, S., Quémerais, E., Montmessin, F., Leblanc, F., … Guibert, S. (2006). SPICAM on Mars Express: Observing modes and overview of the spectrometer data and scientific results. Journal of Geophysical Research, 111, E10S90. https://doi.org/10.1029/2006JE002690
Bertaux, J.-L., Leblanc, F., Witasse, O., Quemerais, E., Lilensten, J., Stern, S. A., … Korablev, O. (2005). Discovery of an aurora on Mars. Nature, 435(7043), 790–794. https://doi.org/10.1038/nature03603
Chaufray, J. Y., Bertaux, J.-L., Leblanc, F., & Quémerais, E. (2008). Observation of the hydrogen corona with SPICAM on Mars Express. Icarus, 195(2), 598–613. https://doi.org/10.1016/j.icarus.2008.01.009
Connerney, J. E. P., Acufia, M. H., Wasilewski, P. J., Kletetschka, G., Ness, N. F., Rème, H., … Mitchell, D. L. (2001). The global magnetic field of Mars and implications for crustal evolution. Geophysical Research Letters, 28(21), 4015–4018. https://doi.org/10.1029/2001GL013619
Diéval, C., Stenberg, G., Nilsson, H., Edberg, N. J. T., & Barabash, S. (2013). Reduced proton and alpha particle precipitations at Mars during solar wind pressure pulses: Mars Express results. Journal of Geophysical Research: Space Physics, 118, 3421–3429. https://doi.org/10.1002/jgra.50375
Eather, R. H. (1967). Auroral proton precipitation and hydrogen emissions. Reviews of Geophysics and Space Physics, 5(3), 207–285. https://doi.org/10.1029/RG005i003p00207
Futaana, Y., Barabash, S., Grigoriev, A., Holmström, M., Kallio, E., Brandt, P. C., … Dierker, C. (2006). First ENA observations at Mars: ENA emissions from the Martian upper atmosphere. Icarus, 182(2), 424–430. https://doi.org/10.1016/j.icarus.2005.09.019
Gérard, J.-C., Hubert, B., Meurant, M., Shematovich, V. I., Bisikalo, D. V., Frey, H., … Carlson, C. W. (2001). Observation of the proton aurora with IMAGE FUV imager and simultaneous ion flux in situ measurements. Journal of Geophysical Research, 106(A12), 28,939–28,948. https://doi.org/10.1029/2001JA900119
Gérard, J.-C., Soret, L., Libert, L., Lundin, R., Stiepen, A., Radioti, A., & Bertaux, J.-L. (2015). Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express. Journal of Geophysical Research: Space Physics, 120, 6749–6765. https://doi.org/10.1002/2015JA021150
Halekas (2017). Seasonal variability of the hydrogen exosphere of Mars. Journal of Geophysical Research: Planets, 122, 901–911. https://doi.org/10.1002/2017JE005306
Halekas, J. S., Lillis, R. J., Mitchell, D. L., Cravens, T. E., Mazelle, C., Connerney, J. E. P., … Ruhunusiri, S. (2015). MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophysical Research Letters, 42, 8901–8909. https://doi.org/10.1002/2015GL064693
Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., … Jakosky, B. M. (2017). Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN solar wind ion analyzer in-flight performance and science results. Journal of Geophysical Research: Space Physics, 122, 547–578. https://doi.org/10.1002/2016JA023167
Hubert, B., Gérard, J.-C., Bisikalo, D. V., Shematovich, V. I., & Solomon, S. C. (2001). The role of proton precipitation in the excitation of auroral FUV emissions. Journal of Geophysical Research, 106(A10), 21,475–21,494. https://doi.org/10.1029/2000JA000288
Jian, L., Russell, C. T., Luhmann, J. G., & Skoug, R. M. (2006). Properties of stream interactions at one AU during 1995–2004. Solar Physics, 239(1-2), 337–392. https://doi.org/10.1007/s11207-006-0132-3
Kallio, E., & Barabash, S. (2001). Atmospheric effects of precipitating energetic hydrogen atoms on the Martian atmosphere. Journal of Geophysical Research, 106(A1), 165–177. https://doi.org/10.1029/2000JA002003
Kallio, E., Luhmann, J. G., & Barabash, S. (1997). Charge exchange near Mars: The solar wind absorption and energetic neutral atom production. Journal of Geophysical Research, 102(A10), 22,183–22,197. https://doi.org/10.1029/97JA01662
Kilpua, E. K. J., Lumme, E., Andreeova, K., Isavnin, A., & Koskine, H. E. J. (2015). Properties and drivers of fast interplanetary shocks near the orbit of the Earth (1995–2013). Journal of Geophysical Research: Solar Physics, 120, 4112–4125. https://doi.org/10.1002/2015JA021138
Leblanc, F., Chaufray, J. Y., Witasse, O., Lilensten, J., & Bertaux, J.-L. (2006). The Martian dayglow as seen by SPICAM UV spectrometer on Mars Express. Journal of Geophysical Research, 111, E09S11. https://doi.org/10.1029/2005JE002664
Leblanc, F., Luhmann, J. G., Johnson, R. E., & Chassefière, E. (2002). Some expected impacts of a solar energetic particle event at Mars. Journal of Geophysical Research, 107(A5), 1058. https://doi.org/10.1029/2001JA900178
Lundin, R., Barabash, S., Andersson, H., Holmström, M., Grigoriev, A., Yamauchi, M., … Bochsler, P. (2004). Solar wind-induced atmospheric erosion at Mars: First results from ASPERA-3 on Mars Express. Science, 305(5692), 1933–1936. https://doi.org/10.1126/science.1101860
Montmessin, F., Korablev, O., Lefèvre, F., Bertaux, J.-L., Fedorova, A., Trokhimovskiy, A., … Chapron, N. (2017). SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere. Icarus, 297, 195–216. https://doi.org/10.1016/j.icarus.2017.06.022
Möstl, C., Isavnin, A., Boakes, P. D., Kilpua, E. K. J., Davies, J. A., Harrison, R. A., … Zhang, T. L. (2017). Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory. Space Weather, 15, 955–970. https://doi.org/10.1002/2017SW001614
Mursula, K., & Zieger, B. (1996). The 13.5-day periodicity in the Sun, solar wind, and geomagnetic activity: The last three solar cycles. Journal of Geophysical Research, 101(A12), 27,077–27,090. https://doi.org/10.1029/96JA02470
Rodriguez, L., Masías-Meza, J. J., Dasso, S., Démoulin, P., Zhukov, A. N., Gulisano, A. M., … Janvier, M. (2016). Typical profiles and distributions of plasma and magnetic field parameters in magnetic clouds at 1 AU. Solar Physics, 291(7), 2145–2163. https://doi.org/10.1007/s11207-016-0955-5
Schneider, N. M., Deighan, J. I., Jain, S. K., Stiepen, A., Stewart, A. I. F., Larson, D., … Jakosky, B. M. (2015). Discovery of diffuse aurora on Mars. Science, 350(6261). https://doi.org/10.1126/science.aad0313
Shematovich, V. I., Bisikalo, D. V., Diéval, C., Barabash, S., Stenberg, G., Nilsson, H., … Gérard, J.-C. (2011). Proton and hydrogen atom transport in the Martian upper atmosphere with an induced magnetic field. Journal of Geophysical Research, 116, A11320. https://doi.org/10.1029/2011JA017007
Soret, L., Gérard, J.-C., Libert, L., Shematovich, V. I., Bisikalo, D. V., Stiepen, A., & Bertaux, J.-L. (2016). SPICAM observations and modeling of Mars aurorae. Icarus, 264, 398–406. https://doi.org/10.1016/j.icarus.2015.09.023
Vegard, L. (1939). Hydrogen showers in the auroral region. Nature, 144, 1089.
Wang, X.-D., Barabash, S., Futaana, Y., Grigoriev, A., & Wurz, P. (2013). Directionality and variability of energetic neutral hydrogen fluxes observed by Mars Express. Journal of Geophysical Research: Space Physics, 118, 7635–7642. https://doi.org/10.1002/2013JA018876
Webb, D. F., & Howard, T. A. (2012). Coronal mass ejections: Observations. Living Reviews in Solar Physics, 9, 3. http://www.livingreviews.org/lrsp-2012-3