Abstract :
[en] The transcription factor NF-kappaB controls the expression of hundreds of genes involved in the regulation of the immune/inflammatory response, development, and apoptosis. In resting cells, NF-kappaB proteins are sequestered in the cytoplasm through their tight association with IkappaB proteins. NF-kappaB activation relies on the signal-induced IkappaB phosphorylation and degradation, thereby allowing the nuclear translocation of NF-kappaB proteins. In the nucleus, several post-translational modifications of NF-kappaB and chromatin remodeling of target genes are mandatory for NF-kappaB DNA binding and full transcription. Since 1991, reactive oxygen species (ROS) have been implicated in NF-kappaB activation. ROS enhance the cytoplasmic signaling pathways leading to NF-kappaB nuclear translocation, but reduction/oxidation (redox) also controls several key steps in the nuclear phase of the NF-kappaB program, including chromatin remodeling, recruitment of co-activators, and DNA binding. Here we describe the redox regulation of NF-kappaB activity in the nucleus.
Scopus citations®
without self-citations
185