[en] Replacement of petroleum by other energy sources is one of the principal challenges of contemporary engineering. One of the most promising substitutes for petroleum is biomass, chemically converted into fuel. For instance, as the world's biggest producer of sugarcane, Brazil generates large quantities of agricultural residues from sugarcane cultivation which could be used to produce biofuels for transportation and aviation (i.e. jet fuel) without much difficulty. Furthermore, sugar beet industry generates important amount of waste that could be valorized into biofuels. The purpose of this article is to review the different technologies currently available for the production of biofuels via a thermochemical pathway using sugarcane bagasse and sugar beet pulp as feedstock, with specific interest in using feedstock gasification and subsequent conversion of the synthetic gas into fuel. Gasification is a longstanding process of conversion of carbonaceous material into a gaseous compound (syngas) and a solid output, called char. Several kinds of gasifiers are described, as well as the syngas cleaning-up process, and the characteristics of several processes through which syngas is converted into synthetic fuel are detailed, including Fischer-Tropsch (FT), Methanol-to-gasoline (MTG), Methanol-to-olefins (MTO) as well as
pyrolysis.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Nicodème, Thibault
Berchem, Thomas ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > SMARTECH
Jacquet, Nicolas ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > SMARTECH
Richel, Aurore ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > SMARTECH
Language :
English
Title :
Thermochemical conversion of sugar industry by-products to biofuels
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Soetaert, W., Vandamme, E.J., Biofuels in perspective. Soetaert, W., Vandamme, E.J., (eds.) Biofuels, 2009, Wiley, 1–8, 10.1111/j.1461-9563.2008.00379.x.
Leibbrandt NH. Techno-economic study for sugarcane bagasse to liquid biofuels in South Africa: A comparison between biological and thermochemical process routes. University of Stellenbosch; 2010.
Dieter, S., Witzel, W., Renewable energy: the facts. 2010, Earthscan, London.
Mabee, E.W., Policy options to support biorefining. Stuart, R.P., El-Halwagi, M.M., (eds.) Integrated biorefineries: Design, Analysis, and Optimization, 2013, CRC Press, USA, 729–748.
FAPESP Boeing, Embraer and UNICAMP. Flightpath to aviation biofuel in Brazil: Action plan; 2013.
Voloshin, R.A., Rodionova, M.V., Zharmukhamedov, S.K., Nejat Veziroglu, T., Allakhverdiev, S.I., Review: biofuel production from plant and algal biomass. Int J Hydrog Energy 41 (2016), 17257–17273, 10.1016/j.ijhydene.2016.07.084.
Mohr, A., Raman, S., Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63 (2013), 114–122, 10.1016/j.enpol.2013.08.033.
Alam, F., Mobin, S., Chowdhury, H., Third generation biofuel from Algae. Procedia Eng 105 (2015), 763–768, 10.1016/j.proeng.2015.05.068.
UNICADATA. Sugarcane production data in 2015-2016. Brazilian Sugarcane Industry Association (UNICA). 〈 http://www.unicadata.com.br/historico-de-producao-e-moagem.php?idMn=31&tipoHistorico=2〉 (02/06/2016).
Arruda, P., Perspective of the sugarcane industry in Brazil. Trop Plant Biol 4 (2011), 3–8, 10.1007/s12042-011-9074-5.
Jank, M.S., Sugarcane industry in Brazil: ethanol, sugar, bioelectricity. UNICA, Braz Sugarcane Ind, 2008 〈http://www.unica.com.br〉 [05/06/2016].
International Energy Agency, Energy technologies for a sustainable future transport. 2004, IEA, Paris.
ISLAM, M.R., HANIU, H., ISLAM, M.N., UDDIN, M.S., Thermochemical conversion of sugarcane bagasse into bio-crude oils by fluidized-bed pyrolysis technology. J Therm Sci Technol 5 (2010), 11–23, 10.1299/jtst.5.11.
Ahmed, I.I., Gupta, A.K., Sugarcane bagasse gasification: global reaction mechanism of syngas evolution. Appl Energy 91 (2012), 75–81, 10.1016/j.apenergy.2011.07.001.
Dien, B.S., Miller, D.J., Hector, R.E., Dixon, R.A., Chen, F., McCaslin, M., et al. Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresour Technol 102 (2011), 6479–6486, 10.1016/j.biortech.2011.03.022.
Yasin, M., Bhutto, A.W., Bazmi, A.A., Karim, S., Efficient utilization of rice-wheat straw to produce value-added composite products. Int J Chem Environ Eng 1 (2010), 136–143.
La betterave.com. 2006. 〈http://www.labetterave.com/les_produits/la_pulpe/21/index.html〉.
Rapport d'activités 2015–2016. Confédération des betteraviers belges asbl.
Yilgin, M., Deveci Duranay, N., Pehlivan, D., Co-pyrolysis of lignite and sugar beet pulp. Energy Convers Manag 51 (2010), 1060–1064, 10.1016/j.enconman.2009.12.010.
Aho, A., Käldström, M., Kumar, N., Eränen, K., Hupa, M., Holmbom, B., et al. Pyrolysis of beet pulp in a fluidized bed reactor. J Anal Appl Pyrolysis 104 (2013), 426–432, 10.1016/j.jaap.2013.06.002.
Matsuoka, S., Ferro, J., Arruda, P., The brazilian experience of sugarcane ethanol industry. Vitr Cell Dev Biol - Plant 45 (2009), 372–381, 10.1007/978-1-4419-7145-6_9.
Stephen, J., Mabee, W.E., Saddler, J.N., Biomass logistics as a determinant of secongeneration biofuel facility scale, location and technology selection. Biofuels, Bioprod Bioref 4 (2010), 503–518, 10.1002/bbb.
Obando, D.S., Gualdron, M.A., Reno, M.L.G., Lora, E.E.S., Techno-economic indicators for the thermochemical and biochemical routes for biofuels production using sugarcane bagasse as feedstock. Zuckerindustrie 135 (2010), 601–606.
Sims, R., Taylor, M., Jack, S., Mabee, W., From 1st to 2nd Generation Bio Fuel Technologies: an overview of current industry and RD&D activities. Int Energy Agency, Paris, Fr, 2008, 124.
Molino, A., Chianese, S., Musmarra, D., Biomass gasification technology: the state of the art overview. J Energy Chem 25 (2016), 10–25, 10.1016/j.jechem.2015.11.005.
Figueroa, J.E.J., Ardila, Y.C., Hoss Lunelli, B., Filho, R.M., Wolf Maciel, M.R., Evaluation of pyrolysis and steam gasification processes of sugarcane bagasse in a fixed bed reactor. Chem Eng Trans 32 (2013), 925–930, 10.3303/CET1332155.
Walter, A., Ensinas, A.V., Combined production of second-generation biofuels and electricity from sugarcane residues. Energy 35 (2010), 874–879, 10.1016/j.energy.2009.07.032.
Li, X.T., Grace, J.R., Lim, C.J., Watkinson, A.P., Chen, H.P., Kim, J.R., Biomass gasification in a circulating fluidized bed. Biomass- Bioenergy 26 (2004), 171–193, 10.1016/S0961-9534(03)00084-9.
Gómez-Barea, A., Arjona, R., Ollero, P., Pilot-plant gasification of olive stone: a technical assessment. Energy Fuels 19 (2005), 598–605, 10.1021/ef0498418.
Franco, C., Pinto, F., Gulyurtlu, I., Cabrita, I., The study of reactions influencing the biomass steam gasification process. Fuel 82 (2003), 835–842, 10.1016/S0016-2361(02)00313-7.
Ratafia-Brown J, Manfredo L, Hoffmann J, Ramezan M. Major environmental aspects of gasification based power generation technologies. U.S Department of Energy; 2002.
Sanlisoy, A., Carpinlioglu, M.O., A review on plasma gasification for solid waste disposal. Int J Hydrog Energy 42 (2017), 1361–1365, 10.1016/j.ijhydene.2016.06.008.
Mondal, P., Dang, G.S., Garg, M.O., Syngas production through gasification and cleanup for downstream applications - Recent developments. Fuel Process Technol 92 (2011), 1395–1410, 10.1016/j.fuproc.2011.03.021.
Tijmensen, M.J.A., Faaij, A.P.C., Hamelinck, C.N., Van Hardeveld, M.R.M., Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass- Bioenergy 23 (2002), 129–152, 10.1016/S0961-9534(02)00037-5.
Boerrigter, H., Rauch, R., Syngas production and utilisation. Knoef, H.A.M., (eds.) Handbook Biomass Gasification, 2006, Biomass Technology Group, Enschede, The Netherlands, 211–230.
Trippe, F., Fröhling, M., Schultmann, F., Stahl, R., Henrich, E., Dalai, A., Comprehensive techno-economic assessment of dimethyl ether (DME) synthesis and Fischer-Tropsch synthesis as alternative process steps within biomass-to-liquid production. Fuel Process Technol 106 (2013), 577–586, 10.1016/j.fuproc.2012.09.029.
Fatih Demirbas, M., Biorefineries for biofuel upgrading: a critical review. Appl Energy 86 (2009), S151–S161, 10.1016/j.apenergy.2009.04.043.
Kooy, P., Kirk, C.M., The production of methanol and gasoline. Energy Methanol 2 (1996), 1–18.
Niziolek, A.M., Onel, O., Hasan, M.M.F., Floudas, C.A., Municipal solid waste to liquid transportation fuels - Part II: process synthesis and global optimization strategies. Comput Chem Eng 74 (2015), 184–203, 10.1016/j.compchemeng.2014.10.007.
Leibbrandt, N.H., Knoetze, J.H., Görgens, J.F., Comparing biological and thermochemical processing of sugarcane bagasse: an energy balance perspective. Biomass- Bioenergy 35 (2011), 2117–2126, 10.1016/j.biombioe.2011.02.017.
Bridgwater, A.V., Meier, D., Radlein, D., An overview of fast pyrolysis of biomass. Org Geochem 30 (1999), 1479–1493, 10.1016/S0146-6380(99)00120-5.
Várhegyi, G., Antal, M.J., Jakab, E., Szabó P., Kinetic modeling of biomass pyrolysis. J Anal Appl Pyrolysis 42 (1997), 73–87, 10.1016/S0165-2370(96)00971-0.
Várhegyi, G., Jakab, E., Antal, M.J., Is the Broido-Shafizadeh model for cellulose pyrolysis true?. Energy Fuels 8 (1994), 1345–1352, 10.1021/ef00048a025.
Tsai, W.T., Lee, M.K., Chang, Y.M., Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrolysis 76 (2006), 230–237, 10.1016/j.jaap.2005.11.007.
Varma, A.K., Mondal, P., Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crops Prod 95 (2017), 704–717, 10.1016/j.indcrop.2016.11.039.
Montoya, J., Pecha, B., Roman, D., Janna, F.C., Garcia-Perez, M., Effect of temperature and heating rate on product distribution from the pyrolysis of sugarcane bagasse in a hot plate reactor. J Anal Appl Pyrolysis 123 (2017), 347–363, 10.1016/j.jaap.2016.11.008.
Sheikhdavoodi, M.J., Almassi, M., Ebrahimi-Nik, M., Kruse, A., Bahrami, H., Gasification of sugarcane bagasse in supercritical water; Evaluation of alkali catalysts for maximum hydrogen production. J Energy Inst 88 (2015), 450–458, 10.1016/j.joei.2014.10.005.
Tavasoli, A., Barati, M., Karimi, A., Sugarcane bagasse supercritical water gasification in presence of potassium promoted copper nano-catalysts supported on γ -Al2O3. Int J Hydrog Energy 41 (2016), 174–180, 10.1016/j.ijhydene.2015.09.026.
Devrim, Y.G., Pyrolysis kinetics of blends of Yeni Çeltek lignite and sugar beet pulp. Energy Sources, Part A Recover Util Environ Eff 30 (2007), 238–246, 10.1080/00908310600712646.
Mendes, F.L., Ximenes, V.L., de Almeida, M.B.B., Azevedo, D.A., Tessarolo, N.S., de Rezende, Pinho, A., Catalytic pyrolysis of sugarcane bagasse and pinewood in a pilot scale unit. J Anal Appl Pyrolysis 122 (2016), 395–404, 10.1016/j.jaap.2016.08.001.
Nguyen, T.S., Duong, T.L., Pham, T.T.T., Nguyen, D.T., Le, P.N., Nguyen, H.L., et al. Online catalytic deoxygenation of vapour from fast pyrolysis of Vietnamese sugarcane bagasse over sodium-based catalysts. J Anal Appl Pyrolysis, 2018, 10.1016/j.jaap.2017.07.006 (In press).
David, G.F., Perez, V.H., Rodriguez Justo, O., Garcia-Perez, M., Effect of acid additives on sugarcane bagasse pyrolysis: production of high yields of sugars. Bioresour Technol 223 (2017), 74–83, 10.1016/j.biortech.2016.10.051.
Gonçalves, G., da, C., Pereira, N.C., Veit, M.T., Production of bio-oil and activated carbon from sugarcane bagasse and molasses. Biomass- Bioenergy 85 (2016), 178–186, 10.1016/j.biombioe.2015.12.013.
Anukam, A., Mamphweli, S., Reddy, P., Meyer, E., Okoh, O., Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: a comprehensive review. Renew Sustain Energy Rev 66 (2016), 775–801, 10.1016/j.rser.2016.08.046.
Carpio, L.G.T., Simone, de Souza, F., Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: scenarios of cost reductions. Renew Energy 111 (2017), 771–780, 10.1016/j.renene.2017.05.015.
Anex, R.P., Aden, A., Kazi, F.K., Fortman, J., Swanson, R.M., Wright, M.M., et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89 (2010), S29–S35, 10.1016/j.fuel.2010.07.015.
Daystar, J., Treasure, T., Gonzalez, R., Reeb, C., Venditti, R., Kelley, S., The NREL biochemical and thermochemical ethanol conversion processes: financial and environmental analysis comparison. BioResources 10 (2015), 5083–5095, 10.15376/biores.10.3.5083-5095.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.