Kluge, B., Vater, J., Salnikow, J., Eckart, K., Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett. 1988, 231, 107–110.
Peypoux, F., Bonmatin, J. M., Wallach, J., Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 1999, 51, 553–563.
Peypoux, F., Bonmatin, J. M., Labbe, H., Grangemard, I. et al., [Ala4]surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur. J. Biochem. 1994, 224, 89–96.
Baumgart, F., Kluge, B., Ullrich, C., Vater, J. et al., Identification of amino acid substitutions in the lipopeptide surfactin using 2D NMR spectroscopy. Biochem. Biophys. Res. Commun. 1991, 177, 998–1005.
Peypoux, F., Bonmatin, J. M., Labbé, H., Das, B. C. et al., Isolation and characterization of a new variant of surfactin, the [Val7]surfactin. Eur. J. Biochem. 1991, 202, 101–106.
Baumgart, F., Kluge, B., Ullrich, C., Vater, J. et al., Identification of amino acid substitutions in the lipopeptide surfactin using 2D NMR spectroscopy. Biochem. Biophys. Res. Commun. 1991, 177, 998–1005.
Grangemard, I., Peypoux, F., Wallach, J., Das, B. C. et al., Lipopeptides with improved properties: Structure by NMR, purification by HPLC and structure-activity relationships of new isoleucyl-rich surfactins. J. Pept. Sci. 1997, 3, 145–154.
Jacques, P., Surfactin and other lipopeptides from Bacillus spp., in: Biosurfactants, Springer Berlin Heidelberg, 2011, pp 57–91.
Sieber, S. A., Marahiel, M. A., Molecular mechanisms underlying nonribosomal peptide synthesis: Approaches to new antibiotics. Chem. Rev. 2005, 105, 715–38.
Bonmatin, J.-M., Laprévote, O., Peypoux, F., Diversity among microbial cyclic lipopeptides: Iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb. Chem. High Throughput Screening 2003, 6, 541–556.
Béchet, M., Castéra-Guy, J., Guez, J. S., Chihib, N. E. et al., Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresour. Technol. 2013, 145, 264–270.
Fickers, P., Guez, J. S., Damblon, C., Leclere, V. et al., High-level biosynthesis of the anteiso-C17 isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl. Environ. Microbiol. 2009, 75, 4636–4640.
Ahimou, F., Jacques, P., Deleu, M., Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb. Technol. 2000, 27, 749–754.
Razafindralambo, H., Popineau, Y., Deleu, M., Hbid, C. et al., Foaming properties of lipopeptides produced by Bacillus subtilis: Effect of lipid and peptide structural attributes. J. Agric. Food Chem. 1998, 46, 911–916.
Dufour, S., Deleu, M., Nott, K., Wathelet, B. et al., Haemolytic activity of new linear surfactin analogs in relation to their physio-chemical properties. Biochim. Biophys. Acta 2005, 1726, 87–95.
Jourdan, E., Henry, G., Duby, F., Dommes. J. et al., Insights into the defense-related events occuring in Plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol. Plant Microbe Interact. 2009, 22, 456–468.
Klein, W., Weber, M. H., Marahiel, M. A., Cold shock response of Bacillus subtilis: Isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J. Bacteriol. 1999, 181, 5341–5349.
Kaneda, T., Fatty acids of the genus Bacillus: An example of branched-chain preference. Bacteriol. Rev. 1977, 41, 391–418.
Coutte, F., Niehren, J., Dhali, D., John, M. et al., Modeling leucine's metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Biotechnol. J. 2015, 10, 1216–1234.
Naik, D. N., Kaneda, T., Biosynthesis of branched long-chain fatty acids by species of Bacillus: Relative activity of three alpha-keto acid substrates and factors affecting chain length. Can. J. Microbiol. 1974, 20, 1701–8.
Debarbouille, M., Gardan, R., Arnaud, M., Rapoport, G., Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J. Bacteriol. 1999, 181, 2059–66.
Belitsky, B. R., Role of branched-chain amino acid transport in Bacillus subtilis CodY activity. J. Bacteriol. 2015, 197, 1330–1338.
Nickel, M., Homuth, G., Böhnisch, C., Mäder, U. et al., Cold induction of the Bacillus subtilis bkd operon is mediated by increased mRNA stability. Mol. Genet. Genomics. 2004, 272, 98–107.
Singh, V. K., Hattangady, D. S., Giotis, E. S., Singh, A. K. et al., Insertional inactivation of branced-chain a-keto acid dehydrogenase in Staphylococcus aureus leads to decreased branched-chain membrane fatty acid content and increased suseptibility to certain stresses. Appl. Environ. Microbiol. 2008, 74, 5882–5890.
Tanaka, K., Henry, C. S., Zinner, J. F., Jolivet, E. et al., Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res. 2013, 41, 687–699.
Coutte, F., Leclère, V., Béchet, M., Guez, J. S. et al., Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J. Appl. Microbiol. 2010, 109, 480–491.
Coutte, F., Lecouturier, D., Yahia, S. A., Leclère, V. et al.,. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl. Microbiol. Biotechnol. 2010, 87, 499–507.
Dörries, K., Schlueter, R., Lalk, M. Impact of antibiotics with various target sites on the metabolome of Staphylococcus aureus. Antimicrob. Agents Chemother. 2014, 58, 7151–7163.
Nicolas, P., Mäder, U., Dervyn, E., Rochat, T. et al., Condition-dependent transcriptome architecture in Bacillus subtilis. Science 2012, 1103, 1103–1106.
Brinsmade, S. R., Kleijn, R. J., Sauer, U., Sonenshein, A. L., Regulation of CodY activity through modulation of intracellular branched-chain amino acid pools. J. Bacteriol. 2010, 192, 6357–6368.
Wei, Y. H., Lai, C. C., Chang, J. S., Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochem. 2007, 42, 40–45.
Guez JS., Etude de la productivite˙ et de la selectivite de la biosynthese de mycosubtiline un antibiotique surfactant de Bacillus subtilis. Apport du genie biochimique et de la transcriptome. Ph.D thesis. Universite des Sciences et Technologies de Lille, France.
Nakano, M. M., Dailly, Y. P., Zuber, P., Clark, D. P., Characterization of anaerobic fermentative growth of Bacillus subtilis: Identification of fermentation end products and genes required for growth. J. Bacteriol. 1997, 179, 6749–6755.
Cruz Ramos, H., Hoffmann, T., Marino, M., Nedjari, H. et al., Fermentative metabolism of Bacillus subtilis: Physiology and regulation of gene expression. J. Bacteriol. 2000. 182, 3072–3080.
Coutte, F., Lecouturier, D., Leclère, V., Béchet, M. et al., New integrated bioprocess for the continuous production, extraction and purification of lipopeptides produced by Bacillus subtilis in membrane bioreactor. Process Biochem. 2013, 48, 25–32.
Muñoz-Márquez, M. E., Ponce-Rivas, E., Effect of pfkA chromosomal interruption on growth, sporulation, and production of organic acids in Bacillus subtilis. J. Basic Microbiol. 2010, 50, 232–240.
Ali, N. O., Bignon, J., Rapoport, G., Debarbouille, M., Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. J. Bacteriol. 2001, 183, 2497–2504.
Shivers, R. P., Dineen, S. S., Sonenshein, A. L., Positive regulation of Bacillus subtilis ackA by CodY and CcpA: Establishing a potential hierarchy in carbon flow. Mol. Microbiol. 2006, 62, 811–822.
Sonenshein, A. L., Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 2007, 5, 917–927.
Youssef, N. H., Duncan, K. E., Michael, J., Mcinerney, M. J., Importance of 3-hydroxy fatty acid composition of lipopeptides for biosurfactant activity. Appl. Environ. Microbiol. 2005, 71, 7690–7695.