Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J.E., Hvelplund, F., et al. 4th generation district heating (4GDH). Energy 68 (2014), 1–11, 10.1016/j.energy.2014.02.089.
Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., Ostergaard, P.A., Möller, B., et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl Energy 145 (2015), 139–154, 10.1016/j.apenergy.2015.01.075.
International Energy Agency, Linking heat and electricity systems. Paris. 2014.
Persson, U., Möller, B., Werner, S., Heat Roadmap Europe: identifying strategic heat synergy regions. Energy Pol 74 (2014), 663–681, 10.1016/j.enpol.2014.07.015.
European Commission, An EU strategy on heating and cooling. COM(2016) 51 final. 2016, 1, 10.1017/CBO9781107415324.004.
Lund, H., Østergaard, P.A., Connolly, D., Mathiesen, B.V., Smart energy and smart energy systems. Energy, 2017, 10.1016/j.energy.2017.05.123.
Brown, T., Schlachtberger, D., Kies, A., Greiner, M., Sector coupling in a highly renewable european energy system. 2016, 15th Wind Integr. Work., Vienna.
Lund, P.D., Lindgren, J., Mikkola, J., Salpakari, J., Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew Sustain Energy Rev 45 (2015), 785–807, 10.1016/j.rser.2015.01.057.
Sisternes, FJ De, Jenkins, J.D., Botterud, A., The value of energy storage in decarbonizing the electricity sector. Appl Energy 175 (2016), 368–379, 10.1016/j.apenergy.2016.05.014.
Christidis, A., Koch, C., Pottel, L., Tsatsaronis, G., The contribution of heat storage to the profitable operation of combined heat and power plants in liberalized electricity markets. Energy 41 (2012), 75–82, 10.1016/j.energy.2011.06.048.
Lund, H., Østergaard, P.A., Connolly, D., Ridjan, I., Mathiesen, B.V., Hvelplund, F., et al. Energy storage and smart energy systems. Int J Sustain Energy Plan Manag 11 (2016), 3–14, 10.5278/ijsepm.2016.11.2.
Grohnheit, P.E., Modelling CHP within a national power system. Energy Pol 21 (1993), 418–429, 10.1016/0301-4215(93)90282-K.
European Union, Directive 2012/27/EU of the European parliament and of the council of 25 October 2012 on energy efficiency. 2012, 1–56.
Rinne, S., Syri, S., The possibilities of combined heat and power production balancing large amounts of wind power in Finland. Energy 82 (2015), 1034–1046, 10.1016/j.energy.2015.02.002.
Wang, H., Yin, W., Abdollahi, E., Lahdelma, R., Jiao, W., Modelling and optimization of CHP based district heating system with renewable energy production and energy storage. Appl Energy 159 (2015), 401–421, 10.1016/j.apenergy.2015.09.020.
Werner, S., International review of district heating and cooling. Energy, 2017, 1–15, 10.1016/j.energy.2017.04.045.
Mellal, M.A., Williams, E.J., Cuckoo optimization algorithm with penalty function for combined heat and power economic dispatch problem. Energy 93 (2015), 1711–1718, 10.1016/j.energy.2015.10.006.
Mohammadi-Ivatloo, B., Moradi-Dalvand, M., Rabiee, A., Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients. Elec Power Syst Res 95 (2013), 9–18, 10.1016/j.epsr.2012.08.005.
Ommen, T., Markussen, W.B., Elmegaard, B., Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling. Energy 74 (2014), 109–118, 10.1016/j.energy.2014.04.023.
Haghrah, A., Nazari-Heris, M., Mohammadi-ivatloo, B., Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved Mühlenbein mutation. Appl Therm Eng 99 (2016), 465–475, 10.1016/j.applthermaleng.2015.12.136.
Ziebik, A., Szegda, D., Qvale, B., Elmegaard, B., Thermodynamic simulation analysis of a multifuel CHP plant basing on the technological diagram of Aved??re unit 2. Arch Therm 31 (2010), 79–93, 10.2478/v10173-010-0005-x.
Quoilin, S., Hidalgo González, I., Zucker, A., Modelling future EU power systems under high shares of renewables. The dispa-SET 2.1 open-source model. 2017, 10.2760/25400.
Verbruggen, A., System model of combined heat. Resour Energy 4 (1982), 231–263.
Verbruggen, A., Klemes, J.J., Rosen, M.A., Assessing cogeneration activity in extraction – condensing steam turbines: dissolving the issues by applied thermodynamics. 2017, 1–6, 10.1115/1.4033424.
Verbruggen, A., Dewallef, P., Quoilin, S., Wiggin, M., Unveiling the mystery of combined heat & power (cogeneration). Energy 61 (2013), 575–582, 10.1016/j.energy.2013.09.029.
Lowe, R., Combined heat and power considered as a virtual steam cycle heat pump. Energy Pol 39 (2011), 5528–5534, 10.1016/j.enpol.2011.05.007.
Lythcke-Jørgensen, C.E., Münster, M., Ensinas, A.V., Haglind, F., A method for aggregating external operating conditions in multi-generation system optimization models. Appl Energy 166 (2016), 59–75, 10.1016/j.apenergy.2015.12.050.
European Commision, Quarterly report on european gas markets. Market Obs. Energy, 10, 2017.
Sashirekha, A., Pasupuleti, J., Moin, N.H., Tan, C.S., Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates. Int J Electr Power Energy Syst 44 (2013), 421–430, 10.1016/j.ijepes.2012.07.038.
Alipour, M., Mohammadi-Ivatloo, B., Zare, K., Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs. Appl Energy 136 (2014), 393–404, 10.1016/j.apenergy.2014.09.039.
International Renewable Energy Agency, The power to change: solar and wind cost reduction potential to 2025. 2016.
Grosse, R., Christopher, B., Stefan, W., Geyer, R., Robbi, S., Long term (2050) projections of techno-economic performance of large-scale heating and cooling in the EU. 2017, 10.2760/24422.
International Energy Agency I. CO2 emissions from fuel combustion, 2016.
Vada, P.A., Modelling combined heat and power plants. Modelling CHP plants on a system level in the EMPS power market model. 2014.
Zugno, M., Morales, J.M., Madsen, H., Compute DTU. Robust optimization for unit commitment and dispatch in energy markets. 2015.