Thiamine supplementation facilitates thiamine transporter expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows
Pan, X. H.; Yang, L.; Beckers, Yveset al.
2017 • In Journal of Dairy Science, 100 (7), p. 5329-5342
Pan, X. H.; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, Gembloux Agro-Bio Tech, Precision Livestock and Nutrition, University of Liège, Passage des Déportés 2, Gembloux, Belgium
Yang, L.; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Beckers, Yves ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions animales et nutrition
Xue, F. G.; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Tang, Z. W.; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Jiang, L. S.; Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
Xiong, B. H.; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Thiamine supplementation facilitates thiamine transporter expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows
Analytical Methods Committee. Determination of thiamine and riboflavin in pet foods and animal feedingstuffs. Analyst (Lond.) 125 (2000), 353–360.
Andrews, F.M., Buchanan, B.R., Elliot, S.B., Clariday, N.A., Edwards, L.H., Gastric ulcers in horses. J. Anim. Sci. 83 (2005), 18–21.
AOAC. Official Methods of Analysis, 15th ed., 1990, AOAC, Washington, DC.
AOAC International. Official Methods of Analysis, 16th ed., 1995, AOAC International, Washington, DC.
Arun, R., Edmondnson, A., Goldman, I.D., Zhao, R., SLC19A3 encodes a second thiamine transporter ThTr2. BBA-Mol. Basis Dis. 1537 (2001), 175–178.
Beaudet, V., Gervais, R., Graulet, B., Noziere, P., Doreau, M., Fanchone, A., Castagnino, D.D., Girard, C.L., Effects of dietary nitrogen levels and carbohydrate sources on apparent ruminal synthesis of some B vitamins in dairy cows. J. Dairy Sci. 99 (2016), 2730–2739 26851844.
Bozic, I., Savic, D., Laketa, D., Bjelobaba, I., Milenkovic, I., Pekovic, S., Nedeljkovic, N., Lavrnja, I., Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia. PLoS One, 10, 2015, e0118372 25695433.
Brent, B.E., Relationship of acidosis to other feedlot ailments. J. Anim. Sci. 43 (1976), 930–935.
Breves, G., Brandt, M., Hoeller, H., Rohr, K., Flow of thiamin to the duodenum in dairy cows fed different rations. J. Agric. Sci. 96 (1981), 587–591.
Castagnino, D.S., Kammes, K.L., Allen, M.S., Gervais, R., Chouinard, P.Y., Girard, C.L., Particle length of silages affects apparent ruminal synthesis of B vitamins in lactating dairy cows. J. Dairy Sci. 99 (2016), 6229–6236 27236755.
Chang, G., Zhuang, S., Seyfert, H.M., Zhang, K., Xu, T., Jin, D., Guo, J., Shen, X., Hepatic TLR4 signaling is activated by LPS from digestive tract during SARA, and epigenetic mechanisms contribute to enforced TLR4 expression. Oncotarget 6 (2015), 38578–38590 26498350.
Chen, Y., Oba, M., Guan, L.L., Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Vet. Microbiol. 159 (2012), 451–459 22622335.
da Silva Correia, J., Soldau, K., Christen, U., Tobias, P.S., Ulevitch, R.J., Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 276 (2001), 21129–21135 11274165.
Dabak, M., Gul, Y., Thiamine deficiency in sheep with chronic rumen acidosis. Vet. Rec. 154 (2004), 58–59 14758835.
Department of National Standards of P. R. China. Determination of calcium in feedstuff (GB/T 6436–2002), 2002, Press of National Standards, Beijing, China.
Department of National Standards of P. R. China. Determination of phosphorus in feedstuff (GB/T 6437–2002), 2002, Press of National Standards, Beijing, China.
Department of National Standards of P. R. China. Determination of vitamin B1 in feedstuff (GB/T 14700–2002), 2002, Press of National Standards, Beijing, China.
Diaz, G.A., Banikazemi, M., Oishi, K., Desnick, R.J., Gelb, B.D., Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat. Genet. 22 (1999), 309–312 10391223.
Dong, H., Wang, S., Jia, Y., Ni, Y., Zhang, Y., Zhuang, S., Shen, X., Zhao, R., Long-term effects of subacute ruminal acidosis (SARA) on milk quality and hepatic gene expression in lactating goats fed a high-concentrate diet. PLoS One, 8, 2013, e82850 24376594.
Dutta, B., Huang, W., Molero, M., Kekuda, R., Leibach, F.H., Devoe, L.D., Ganapathy, V., Prasad, P.D., Cloning of the human thiamine transporter, a member of the folate transporter family. J. Biol. Chem. 274 (1999), 31925–31929 10542220.
Emmanuel, D.G., Dunn, S.M., Ametaj, B.N., Feeding high proportions of barley grain stimulates an inflammatory response in dairy cows. J. Dairy Sci. 91 (2008), 606–614 18218747.
Emmanuel, D.G., Madsen, K.L., Churchill, T.A., Dunn, S.M., Ametaj, B.N., Acidosis and lipopolysaccharide from Escherichia coli B:055 cause hyperpermeability of rumen and colon tissues. J. Dairy Sci. 90 (2007), 5552–5557 18024746.
Falder, S., Silla, R., Phillips, M., Rea, S., Gurfinkel, R., Baur, E., Bartley, A., Wood, F.M., Fear, M.W., Thiamine supplementation increases serum thiamine and reduces pyruvate and lactate levels in burn patients. Burns 36 (2010), 261–269 19501976.
Garnsworthy, P.C., Nutrition and Lactation in the Dairy Cow, 2013, Butterworth, London, UK.
Gonzalez-Ortiz, M., Martinez-Abundis, E., Robles-Cervantes, J.A., Ramirez-Ramirez, V., Ramos-Zavala, M.G., Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naive patients with type 2 diabetes. Eur. J. Nutr. 50 (2011), 145–149 20652275.
Gooneratne, S.R., Olkowski, A.A., Klemmer, R.G., Kessler, G.A., Christensen, D.A., High sulfur related thiamine deficiency in cattle: A field study. Can. Vet. J. 30 (1989), 139–146 17423233.
Gozho, G.N., Krause, D.O., Plaizier, J.C., Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows. J. Dairy Sci. 90 (2007), 856–866 17235162.
Gressley, T.F., Inflammatory responses to subacute ruminal acidosis. Pages 28–41 in 25th Annual Florida Ruminant Nutrition Symposium, 2014, University of Florida IFAS Extension, Gainesville.
Hazell, A.S., Butterworth, R.F., Update of cell damage mechanisms in thiamine deficiency: Focus on oxidative stress, excitotoxicity and inflammation. Alcohol Alcohol. 44 (2009), 141–147 19151161.
Hill, J.H., Rammell, C.G., Forbes, S., Blood thiamine levels in normal cattle and sheep at pasture. N. Z. Vet. J. 36 (1988), 49–50 16031438.
Hoeller, H., Fecke, M., Schaller, K., Permeability to thiamin of the sheep rumen wall. J. Anim. Sci. 44 (1977), 158–161 833051.
Höltershinken, M., Höhling, A., Wendelken, G., Elias, K., Scholz, H., Einflüsse auf den ruminalen Protozoenbesatz des Rindes (in vitro) Teil 2: Wirkung einer subklinischen Pansenazidose ohne und mit Thiaminsubstitution. Tierärztliche Praxis Großtiere. 31 (2003), 178–182.
Hoyumpa, A.M.J., Nichols, S., Schenke, S., Wilson, F.A., Thiamine transport in thiamine-deficient rats: Role of the unstirred water layer. Biochim. Biophys. Acta 436 (1976), 438–447 1276223.
Jhala, S.S., Wang, D., Hazell, A.S., Thiamine deficiency results in release of soluble factors that disrupt mitochondrial membrane potential and downregulate the glutamate transporter splice-variant GLT-1b in cultured astrocytes. Biochem. Biophys. Res. Commun. 448 (2014), 335–341 24735535.
Karapinar, T., Dabak, M., Kizil, O., Thiamine status of feedlot cattle fed a high-concentrate diet. Can. Vet. J. 51 (2010), 1251–1253 21286325.
Khafipour, E., Krause, D.O., Plaizier, J.C., A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J. Dairy Sci. 92 (2009), 1060–1070 19233799.
Kleen, J.L., Hooijer, G.A., Rehage, J., Noordhuizen, J.P.T.M., Subacute ruminal acidosis (SARA): A review. J. Vet. Med. A Physiol. Pathol. Clin. Med. 50 (2003), 406–414 14633219.
Kurashima, Y., Goto, Y., Kiyono, H., Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur. J. Immunol. 43 (2013), 3108–3115 24414823.
Lau, E., Marques, C., Pestana, D., Santoalha, M., Carvalho, D., Freitas, P., Calhau, C., The role of I-FABP as a biomarker of intestinal barrier dysfunction driven by gut microbiota changes in obesity. Nutr. Metab. (Lond.) 13 (2016), 31–37 27134637.
Lee, K.C., Chang, H.H., Chung, Y.H., Lee, T.Y., Andrographolide acts as an anti-inflammatory agent in LPS-stimulated RAW264.7 macrophages by inhibiting STAT3-mediated suppression of the NF-kappaB pathway. J. Ethnopharmacol. 135 (2011), 678–684 21497192.
Liu, J., Xu, T., Zhu, W., Mao, S., High-grain feeding alters caecal bacterial microbiota composition and fermentation and results in caecal mucosal injury in goats. Br. J. Nutr. 112 (2014), 416–427 24846282.
Mao, S.Y., Huo, W.J., Zhu, W.Y., Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ. Microbiol. 18 (2016), 525–541 25471302.
McDowell, L.R., Vitamins in Animal Nutrition: Comparative Aspects to Human Nutrition, 2012, Academic Press, London, UK.
Miller, B., Meiske, J., Goodrich, R., Effects of grain source and concentrate level on B-vitamin production and absorption in steers. J. Anim. Sci. 62 (1986), 473–483.
Minuti, A., Ahmed, S., Trevisi, E., Piccioli-Cappelli, F., Bertoni, G., Jahan, N., Bani, P., Experimental acute rumen acidosis in sheep: Consequences on clinical, rumen, and gastrointestinal permeability conditions and blood chemistry. J. Anim. Sci. 92 (2014), 3966–3977 24987080.
Olkowski, A.A., Christensen, D.A., Rousseaux, C.G., Association of sulfate-water and blood thiamine concentration in beef cattle: Field studies. Can. J. Anim. Sci. 71 (1991), 825–832.
Pan, X.H., Yang, L., Xue, F.G., Xin, H.R., Jiang, L.S., Xiong, B.H., Beckers, Y., Relationship between thiamine and subacute rumen acidosis induced by a high grain diet in dairy cows. J. Dairy Sci. 99 (2016), 8790–8801 27568043.
Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29, 2001, e45 11328886.
Plaizier, J.C., Li, S., Le Sciellour, M., Schurmann, B.L., Gorka, P., Penner, G.B., Effects of duration of moderate increases in grain feeding on endotoxins in the digestive tract and acute phase proteins in peripheral blood of yearling calves. J. Dairy Sci. 97 (2014), 7076–7084 25242427.
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., Medzhitov, R., Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118 (2004), 229–241 15260992.
Rodriguez-Lecompte, J.C., Kroeker, A.D., Ceballos-Marquez, A., Li, S., Plaizier, J.C., Gomez, D.E., Evaluation of the systemic innate immune response and metabolic alterations of nonlactating cows with diet-induced subacute ruminal acidosis. J. Dairy Sci. 97 (2014), 7777–7787 25459907.
Santschi, D.E., Chiquette, J., Berthiaume, R., Martineau, R., Matte, J.J., Mustafa, A.F., Girard, C.L., Effects of the forage to concentrate ratio on B-vitamin concentrations in different ruminal fractions of dairy cows. Can. J. Anim. Sci. 85 (2005), 389–400.
Santschi, D.E., Chiquette, J., Berthiaume, R., Matte, J.J., Mustafa, A.F., Girard, C.L., Effects of methods of collection and sample preparation on the concentrations of B-vitamins in ruminal fluid of dairy cows. Can. J. Anim. Sci. 85 (2005), 417–420.
Shoeb, M., Ramana, K.V., Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. Free Radic. Biol. Med. 52 (2012), 182–190 22067901.
Steele, M.A., Vandervoort, G., AlZahal, O., Hook, S.E., Matthews, J.C., Rumen epithelial adaptation to high-grain diets involves the coordinated regulation of genes involved in cholesterol homeostasis. Physiol. Genomics 43 (2011), 308–316 21245418.
Uyeno, Y., Shigemori, S., Shimosato, T., Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. 30 (2015), 126–132 26004794.
Van Soest, P.J., Robertson, J.B., Lewis, B.A., Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74 (1991), 3583–3597.
Wang, H., Pan, X., Wang, C., Wang, M., Yu, L., Effects of different dietary concentrate to forage ratio and thiamine supplementation on the rumen fermentation and ruminal bacterial community in dairy cows. Anim. Prod. 55 (2015), 189–193.
Weimer, P.J., Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Front. Microbiol., 6, 2015, 296 25914693.
Yadav, U.C., Kalariya, N.M., Srivastava, S.K., Ramana, K.V., Protective role of benfotiamine, a fat-soluble vitamin B1 analogue, in lipopolysaccharide-induced cytotoxic signals in murine macrophages. Free Radic. Biol. Med. 48 (2010), 1423–1434 20219672.
Zhang, J., Wang, M., Hao, Z., Yu, L., Wang, H., Effects of thiamine on concentrations of volatile fatty acids and lactate in culture medium of high concentrate substrate after in vitro rumen fermentation. Chinese J. Anim. Nutr. 26 (2014), 489–495.
Zhang, R., Zhu, W., Mao, S., High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairy cattle. J. Anim. Sci. Biotechnol. 7 (2016), 42–55.
Zhao, R., Goldman, I.D., Folate and thiamine transporters mediated by facilitative carriers (SLC19A1–3 and SLC46A1) and folate receptors. Mol. Aspects Med. 34 (2013), 373–385 23506878.
Zhu, E., Fang, L., Subramanian, V., Said, H., Sassoon, C., Lipopolysaccharide and cytokines inhibit thiamine uptake and thiamine transporter gene expression in C2c12 myoblasts. Am. J. Respir. Crit. Care Med., 191, 2015, 4361 (Abstr.).
Wang, D.S., Zhang, R.Y., Zhu, W.Y., Mao, S.Y., Effects of subacute ruminal acidosis challenges on fermentation and biogenic amines in the rumen of dairy cows. Livest. Sci. 155 (2013), 262–272.