Jin, D.; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, University of Liège, Gembloux Agro-Bio Tech, Precision Livestock and Nutrition Unit, Passage des Déportés 2, Gembloux, Belgium
Zhao, S.; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Zheng, N.; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Beckers, Yves ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions animales et nutrition
Wang, J.; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, Ministry of Agriculture-Milk Risk Assessment Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Urea metabolism and regulation by rumen bacterial urease in ruminants - A review
Abdoun K., Stumpff F., Martens H. (2006). Ammonia and urea transport across the rumen epithelium: a review. Anim. Health Res. Rev., 7: 43-59.
Abdoun K., Stumpff F., Rabbani I., Martens H. (2010). Modulation ofurea transport across sheep rumen epithelium in vitro by SCFA and CO2. Am. J. Physiol.-Gastr. L., 298: G190-G202.
Armbruster C.E., Smith S.N., Yep A., Mobley H.L. (2014). Increased incidence of urolithiasis and bacteremia during Proteus mirabilis and Providencia stuartii coinfection due to synergistic induction of urease activity. J. Infect Dis., 209: 1524-1532.
Balcells J., Guada J., Castrillo C., Gasa J. (1993). Rumen digestion and urinary excretion of purine derivatives in response to urea supplementation of sodium-treated straw fed to sheep. Brit. J. Nutr., 69: 721-732.
Baldwin R.L.T., Wu S., Li W., Li C., Bequette B.J., Li R.W. (2012). Quantification of tran-scriptome responses of the rumen epithelium to butyrate infusion using RNA-seq technology. Gene Regul. Syst. Bio., 6: 67-80.
Bankir L., Chen K., Yang B. (2004). Lack of UT-B in vasa recta and red blood cells prevents urea-induced improvement of urinary concentrating ability. Am. J. Physiol-Renal, 286: F144-F151.
Batista E.D., Detmann E., Valadares Filho S.C., Titgemeyer E.C., Valadares R.F. (2017). The effect of CP concentration in the diet on urea kinetics and microbial usage of recycled urea in cattle: a meta-analysis. Animal, 11: 1303-1311.
Belzer C., Stoof J., Beckwith C.S., Kuipers E.J., Kusters J.G., van Vliet A.H. (2005). Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. Microbiology, 151: 3989-3995.
Benini S., Rypniewski W.R., Wilson K.S., Miletti S., Ciurli S., Mangani S. (2000). The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 A resolution. J. Biol. Inorg. Chem., 5: 110-118.
Biagi F., Musiani F., Ciurli S. (2013). Structure of the UreD-UreF-UreG-UreE complex in Helicobacter pylori: a model study. J. Biol. Inorg. Chem., 18: 571-577.
Boer J.L., Hausinger R.P. (2012). Klebsiella aerogenes UreF: identification of the UreG binding site and role in enhancing the fidelity of urease activation. Biochemistry, 51: 2298-2308.
Brent B., Adepoju A., Portela F. (1971). Inhibition of rumen urease with acetohydroxamic Acid. J. Anim. Sci., 32: 794-798.
Burbank M.B., Weaver T.J., Williams B.C., Crawford R.L. (2012). Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria. Geomicrobiol. J., 29: 389-395.
Chaucheyras-Durand F., Ossa F. (2014). Review: The rumen microbiome: Composition, abundance, diversity, and new investigative tools. Prof. Anim. Sci., 30: 1-12.
Collier J.L., Baker K.M., Bell S.L. (2009). Diversity of urea-degrading microorganisms in open-ocean and estuarine planktonic communities. Environ. Microbiol., 11: 3118-3131.
Cook A. (1976). Urease activity in the rumen of sheep and the isolation of ureolytic bacteria. J. Gen. Microbiol., 92: 32-48.
Cook A.R., Riley P.W., Murdoch H., Evans P.N., McDonald I.R. (2007). Howardella ure-ilytica gen. nov., sp. nov., a Gram-positive, coccoid-shaped bacterium from a sheep rumen. Int. J. Syst. Evol. Microbiol., 57: 2940-2945.
Coyle J., McDaid S., Walpole C., Stewart G.S. (2016). UT-B urea transporter localization in the bovine gastrointestinal tract. J. Membr. Biol., 249: 77-85.
Dionissopoulos L., AlZahal O., Steele M.A., Matthews J.C., McBride B.W.(2014). Transcriptomic changes in ruminal tissue induced by the periparturient transition in dairy cows. Am. J. Anim. Vet. Sci., 9: 36.
Dyhrman S.T., Anderson D.M. (2003). Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium. Limnol. Oceanogr., 48: 647-655.
Erb R., Brown C., Callahan C., Moeller N., Hill D., Cunningham M. (1976). Dietary urea for dairy cattle. II. Effect on functional traits. J. Dairy Sci., 59: 656-667.
Farrugia M.A., Macomber L., Hausinger R.P. (2013). Biosynthesis of the urease metallo-center. J. Biol. Chem., 288: 13178-13185.
Firkins J., Yu Z. (2006). Characterisation and quantification of the microbial populations in the rumen. In: Ruminant physiology, digestion, metabolism and impact of nutrition on gene expression, immunology and stress, K. Sejrsen, T. Hvelplund, M.O. Nielsen (eds). Wageningen Academic Publishers, The Netherlands, pp. 19-54.
Fong Y.H., Wong H.C., Yuen M.H., Lau P.H., Chen Y.W., Wong K.B. (2013). Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease. PLoS Biol., 11: e1001678.
Giallongo F., Hristov A.N., Oh J., Frederick T., Weeks H., Werner J., Lapierre H., Pa11on R.A., Gehman A., Parys C. (2015). Effects of slow-release urea and rumen-protected methionine and histidine on performance of dairy cows. J. Dairy Sci., 98: 3292-3308.
Harmeyer J., Martens H. (1980). Aspects of urea metabolism in ruminants with reference to the goat. J. Dairy Sci., 63: 1707-1728.
Holder V.B., Tricarico J.M., Kim D.H., Kristensen N.B., Harmon D.L. (2015). The effects of degradable nitrogen level and slow release urea on nitrogen balance and urea kinetics in Holstein steers. Anim. Feed Sci. Tech., 200: 57-65.
Hu L., Mobley H. (1990). Purification and N-terminal analysis of urease from Helicobacter pylori. Infect. Immun., 58: 992-998.
Huntington G., Archibeque S. (2000). Practical aspects of urea and ammonia metabolism in ruminants. J. Anim. Sci., 77: 1-11.
Imaizumi H., Batistel F., de Souza J., Santos F.A. (2015). Replacing soybean meal for wet brewer's grains or urea on the performance of lactating dairy cows. Trop. Anim. Health Prod., 47: 877-882.
Jabri E., Carr M.B., Hausinger R.P., Karplus P.A. (1995). The crystal structure of urease from Klebsiella aerogenes. Science, 268: 998.
Jin D., Zhao S., Wang P., Zheng N., Bu D., Beckers Y., Wang J. (2016). Insights into abundant rumen ureolytic bacterial community using rumen simulation system. Front. Microbiol., 7: 1006.
JinD., ZhaoS., ZhengN., BuD., Beckers Y., Denman S.E., McSweeney C.S., Wang J. (2017). Differences in ureolytic bacterial composition between the rumen digesta and rumen wall based on ureC gene classification. Front. Microbiol., 8.
Jones G., Mi11igan J. (1975). Influence on some rumen and blood parameters of feeding acetohy-droxamic acid in a urea-containing ration for lambs. Can. J. Anim. Sci., 55: 39-47.
Kakimoto S., Okazaki K., Sakane T., Imai K., Sumino Y., Akiyama S.-I., Nakao Y. (1989). Isolation and taxonomie characterization of acid urease-producing bacteria. Agric. Biol. Chem., 53: 1111-1117.
Kertz A.F. (2010). Review: urea feeding to dairy cattle: a historical perspective and review. Prof. Anim. Sci., 26: 257-272.
Kertz A., Davidson L., Cords B., Puch H. (1983). Ruminal infusion of ammonium chloride in lactating cows to determine effect of pH on ammonia trapping. J. Dairy Sci., 66: 2597-2601.
Kim J.N., Henriksen E.D., Cann I.K., Mackie R.I. (2014). Nitrogen utilization and metabolism in Ruminococcus albus 8. Appl. Environ. Microb., 80: 3095-3102.
Kim M., Morrison M., Yu Z. (2011). Status ofthe phylogenetic diversity census ofruminal micro-biomes. FEMS Microbiol. Ecol., 76: 49-63.
Kohn R., Dinneen M., Russek-Cohen E. (2005). Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci., 83: 879-889.
Lapierre H., Lobley G. (2001). Nitrogen recycling in the ruminant: A review. J. Dairy Sci., 84: E223-E236.
Laukova A., Koniarova I. (1994). Survey of urease activity in ruminal bacteria isolated from domestic and wild ruminants. Microbios, 84: 7-11.
Law R.A., Young F.J., Patterson D.C., Kilpatrick D.J., Wylie A.R., Mayne C.S. (2009). Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. J. Dairy Sci., 92: 1001-1012.
Ligabue-Braun R., Real-Guerra R., Carlini C.R., Verli H. (2013). Evidence-based docking of the urease activation complex. J. Biomol. Struct. Dyn., 31: 854-861.
Litman T., Segaard R., Zeuthen T. (2009). Ammonia and urea permeability of mammalian aquaporins. Handb. Exp. Pharmacol., pp. 327-358.
Liu Q., Bender R.A. (2007). Complex regulation of urease formation from the two promoters of the ure operon of Klebsiella pneumoniae. J. Bacteriol., 189: 7593-7599.
Liu Y., Hu T., Jiang D., Zhang J., Zhou X. (2008). Regulation of urease gene of Actinomyces naeslundii in biofilms in response to environmental factors. FEMS Microbiol. Lett., 278: 157-163.
Lu Z., Stumpff F., Deiner C., Rosendahl J., Braun H., Abdoun K., Aschenbach J.R., Martens H. (2014). Modulation of sheep ruminal urea transport by ammonia and pH. Am. J. Physiol.-Regul. Integr. Comp. Physiol., 307: R558-R570.
Lu Z., Gui H., Yao L., Yan L., Martens H., Aschenbach J.R., Shen Z. (2015). Short-chain fatty acids and acidic pH upregulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats. Am. J. Physiol.-Regul. Integr. Comp. Physiol., 308: R283-R293.
Ludden P., Harmon D., Huntington G., Larson B., Axe D. (2000). Influence of the novel urease inhibitor N-(n-butyl) thiophosphoric triamide on ruminant nitrogen metabolism: II. Ruminal nitrogen metabolism, diet digestibility, and nitrogen balance in lambs. J. Anim. Sci., 78: 188-198.
Marini J.C., Fox D.G., Murphy M.R. (2008). Nitrogen transactions along the gastrointestinal tract of cattle: A meta-analytical approach. J. Anim. Sci., 86: 660-679.
Mehta N., Olson J.W., Maier R.J. (2003). Characterization of Helicobacter pylori nickel metabolism accessory proteins needed for maturation of both urease and hydrogenase. J. Bacteriol., 185: 726-734.
Milton C., Brandt Jr R., Titgemeyer E. (1997). Urea in dry-rolled corn diets: finishing steer performance, nutrient digestion, and microbial protein production. J. Anim. Sci., 75: 1415-1424.
Mobley H., Island M.D., Hausinger R.P. (1995). Molecular biology of microbial ureases. Mi-crobiol. Rev., 59: 451-480.
Morsdorf G., Kaltwasser H. (1989). Ammonium assimilation in Proteus vulgaris, Bacillus pas-teurii, and Sporosarcina ureae. Arch. Microbiol., 152: 125-131.
Naeem A., Drackley J.K., Lanier J.S., Everts R.E., Rodriguez-Zas S.L., Loor J.J. (2014). Ruminal epithelium transcriptome dynamics in response to plane of nutrition and age in young Holstein calves. Funct. Integr. Genomics, 14: 261-273.
On S., Atabay H., Corry J., Harrington C., Vandamme P. (1998). Emended description of Campylobacter sputorum and revision of its infrasubspecific (biovar) divisions, including C. sputorum biovarparaureolyticus, a urease-producing variant from cattle and humans. Int. J. Syst. Bacteriol., 48: 195-206.
Owens F.N., Lusby K.S., Mizwicki K., Forero O. (1980). Slow ammonia release from urea: rumen and metabolism studies. J. Anim. Sci., 50: 527-531.
Patra A.K. (2015). Urea/ammonia metabolism in the rumen and toxicity in ruminants. In: Rumen microbiology: from evolution to revolution, Uniya A.K., Singh R., Kamra D.N. (eds). New Delhi, Heidelberg, New York, Dordrecht, London, Springer, pp. 329-341.
Pisulewski P.M., Okorie A.U., Buttery P. J., Haresign W., Lewis D. (1981). Ammonia concentration and protein synthesis in the rumen. J. Sci. Food Agric., 32: 759-766.
Polan C., Miller C., McGi11iard M. (1976). Variable dietary protein and urea for intake and production in Holstein cows. J. Dairy Sci., 59: 1910-1914.
Puppel K., Kuczynska B. (2016). Metabolic profiles of cow's blood; a review. J. Sci. Food Agric., 96: 4321-4328.
Reed K.E. (2001). Restriction enzyme mapping of bacterial urease genes: using degenerate primers to expand experimental outcomes. Biochem. Mol. Biol. Edu., 29: 239-244.
Reynolds C.K., Kristensen N.B. (2008). Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis. J. Anim. Sci., 86: E293-305.
Rojek A., Praetorius J., Frokiaer J., Nielsen S., Fenton R.A. (2008). A current view of the mammalian aquaglyceroporins. Annu. Rev. Physiol., 70: 301-327.
Rojen B.A., Poulsen S.B., Theil P.K., Fenton R.A., Kristensen N.B. (2011). Short communication: Effects of dietary nitrogen concentration on messenger RNA expression and protein abundance of urea transporter-B and aquaporins in ruminal papillae from lactating Holstein cows. J. Dairy Sci., 94: 2587-2591.
Ryder W., Hillman D., Huber J. (1972). Effect of feeding urea on reproductive efficiency in Michigan Dairy Herd Improvement Association herds. J. Dairy Sci., 55: 1290-1294.
Simmons N., Chaudhry A., Graham C., Scriven E., Thistlethwaite A., Smith C., Stewart G. (2009). Dietary regulation of ruminal bovine UT-B urea transporter expression and localization. J. Anim. Sci., 87: 3288.
Sinclair L.A., Blake C.W., Griffin P., Jones G.H. (2012). The partial replacement of soya-bean meal and rapeseed meal with feed grade urea or a slow-release urea and its effect on the performance, metabolism and digestibility in dairy cows. Animal, 6: 920-927.
Singh B.K., Nun an N., Millard P. (2009). Response of fungal, bacterial and ureolytic communities to synthetic sheep urine deposition in a grassland soil. FEMS Microbiol. Ecol., 70: 109-117.
Smith C., Rousselet G. (2001). Facilitative urea transporters. J. Membrane Biol., 183: 1-14.
Stewart G.S., Smith C.P. (2005). Urea nitrogen salvage mechanisms and their relevance to ruminants, non-ruminants and man. Nutr. Res. Rev., 18: 49-62.
Stewart G., Graham C., Cattell S., Smith T., Simmons N., Smith C. (2005). UT-B is expressed in bovine rumen: potential role in ruminal urea transport. Am. J. Physiol-Reg. I., 289: R605-R612.
Su J., Jin L., Jiang Q., Sun W., Zhang F., Li Z. (2013). Phylogenetically diverse ure C genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospon-gia testudinaria. Plos One, 8: e64848.
Symonds H., Mather D.L., Co11is K. (1981). The maximum capacity of the liver of the adult dairy cow to metabolize ammonia. Brit. J. Nutr., 46: 481-486.
Upadhyay L.S.B. (2012). Urease inhibitors: A review. Indian J. Biotechnol., 11: 381-388.
Visser H. de, Valk H., Klop A., Van Der Meulen J., Bakker J., Huntington G. (1997). Nutrient fluxes in splanchnic tissue of dairy cows: Influence of grass quality. J. Dairy Sci., 80: 1666-1673.
Voi gt J., Krawielitzki R., Piatkowski B. (1980 a). Studies on the effect of phosphoric phe-nyl ester diamide as inhibitor of rumen urease in dairy cows. 3. Digestibility of the nutrients and bacterial protein synthesis. Arch. Tierernahr., 30: 835-840.
Voigt J., Piatkowski B., Bock J. (1980 b). Studies on the effect of phosphoric phenyl ester diamide as inhibitor of the rumen urease of dairy cows. 1. Influence on urea hydrolysis, ammonia release and fermentation in the rumen. Arch. Tierernahr., 30: 811-823.
Walpole M.E., Schurmann B.L., Gorka P., Penner G.B., Loewen M.E., Mutsvan-g wa T. (2015). Serosal-to-mucosal urea flux across the isolated ruminal epithelium is mediated via urea transporter-B and aquaporins when Holstein calves are abruptly changed to a moderately fermentable diet. J. Dairy Sci., 98: 1204-1213.
Wanapat M., Phesatcha K., Kang S. (2016). Rumen adaptation of swamp buffaloes (Bubalus bubalis) by high level of urea supplementation when fed on rice straw-based diet. Trop. Anim. Health Prod., 48: 1135-1140.
Weeks D.L., Sachs G. (2001). Sites of pH regulation of the urea channel of Helicobacter pylori. Mol. Microbiol., 40: 1249-1259.
Whitelaw F.G., Milne J.S., Wright S.A. (1991). Urease (EC 3.5.1.5) inhibition in the sheep rumen and its effect on urea and nitrogen metabolism. Br. J. Nutr., 66: 209-225.
Wickersham T., Titgemeyer E., Cochran R., Wickersham E., Gnad D. (2008). Effect of rumen-degradable intake protein supplementation on urea kinetics and microbial use of recycled urea in steers consuming low-quality forage. J. Anim. Sci., 86: 3079-3088.
Wilson G., Martz F., Campbell J., Becker B. (1975). Evaluation of factors responsible for reduced voluntary intake of urea diets for ruminants. J. Anim. Sci., 41: 1431-1437.
Witte C.-P., Rosso M.G., Romeis T. (2005). Identification ofthree urease accessory proteins that are required for urease activation in Arabidopsis. Plant Physiol., 139: 1155-1162.
Wozny M., Bryant M., Holdeman L.T., Moore W. (1977). Urease assay and urease-pro-ducing species of anaerobes in the bovine rumen and human feces. Appl. Environ. Microbiol., 33: 1097-1104.
Yuan P., Meng K., Wang Y., Luo H., Huang H., Shi P., Bai Y., Yang P., Yao B. (2012). Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem. PloS One, 7: e40940.
Zambelli B., Berardi A., Martin-Diaconescu V., Mazzei L., Musiani F., Ma-roney M.J., Ciurli S. (2014). Nickel binding properties of Helicobacter pylori UreF, an accessory protein in the nickel-based activation of urease. J. Biol. Inorg. Chem., 19: 319-334.
Zhang Y.G., Shan A.S., Bao J. (2001). Effect of hydroquinone on ruminal urease in the sheep and its inhibition kinetics in vitro. Asian Australas. J. Anim. Sci., 14: 1216-1220.
Zhao S., Wang J., Zheng N., Bu D., Sun P., Yu Z. (2015). Reducing microbial ureolytic activity in the rumen by immunization against urease therein. BMC Vet. Res., 11: 94.
Zhou J.W., Guo X.S., Degen A.A., Zhang Y., Liu H., Mi J.D., Ding L.M., Wang H.C., Qiu Q., Long R.J. (2015). Urea kinetics and nitrogen balance and requirements for maintenance in Tibetan sheep when fed oat hay. Small Rumin. Res., 129: 60-68.